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ABSTRACT  
Agent based distillations (ABD’s) are low-resolution abstract models, which can be 
used to explore questions associated with land combat operations in a short period of 
time. Movement of agents within the EINSTein and MANA ABD’s is based on a simple 
attraction-repulsion weighting system and an associated numerical penalty function. 
The relative simplicity of these ABD’s seems to have led to the general acceptance of 
their associated movement algorithms, without much validation or analysis of 
behaviour. This paper analyses these movement algorithms and finds unwanted 
behaviour and proposes suggestions for improvement to the penalty function based on 
relative distances. A more novel technique based on the concepts underlying spatial 
estimation is also proposed as an alternative.  
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Executive Summary    
 
Based on counter-intuitive results from a recent study conducted by the authors using 
the EINSTein ABD, the movement algorithms of that ABD and the MANA ABD were 
investigated.  
 
A simplified one-dimensional scenario was used to deduce the causes for the 
unwanted behaviour and some simple analysis led to a basic suggestion for 
improvement to the penalty function based on relative distances. A more novel 
technique based on the concepts underlying spatial estimation was also proposed as an 
alternative.  
 
All of these techniques were then compared on both the simplified one-dimensional 
scenario as well as a static two-dimensional scenario. The results show that these 
penalty functions do not suffer from the counter-intuitive behaviours that appear to 
limit the validity of the EINSTein and MANA penalty functions.  
 
However, of these new penalty functions there has been no attempt to suggest which 
one is ‘correct’ or ‘best’, as this would be a futile exercise. The intent of this paper has 
been to illustrate the variability of movement paths that the alternative penalty 
functions can generate.  
 
Having achieved this, we then suggest that the correct approach is to make the penalty 
function a user-defined ‘parameter’, in exactly the same way that the entity capabilities 
and personalities are. At a minimum, it would make more explicit the assumptions 
made about the movement algorithm when one provides the results or conclusions of a 
study. Ideally, the robustness of these conclusions should be tested to variations in the 
movement algorithm, in the same way that sensitivity analysis is applied to other more 
traditional parameters.  
 
Some improvements to the current implementation of the meta-personalities were also 
made to improve their flexibility, and suggestions for extending the penalty function to 
incorporate non-linear utility and stochastic movement were also provided.  
 
The authors hope that any future versions of EINSTein, MANA or other new ABD take 
into consideration the points raised in this paper.  
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1. Introduction 

1.1 Background 

Agent based distillations (ABD’s) are low-resolution abstract models, used to explore 
questions associated with land combat operations in a short period of time. Being agent 
based means that only simple behavioural rules need to be assigned. This is generally 
achieved by assigning ‘personalities’ to the agents by way of relative weightings to 
various elements on the battlefield (friendly and enemy agents, notional ‘flags’, terrain 
features, etc) and a linear penalty function to determine the entity’s next move. Various 
‘meta-personalities’ can also be assigned which moderate the agent’s default 
personality if certain threshold constraints are exceeded from time to time.  
 
Project Albert is a United States Marine Corps (USMC) research effort that aims to 
identify emergent behaviour through the application of ABD’s and seeks to address the 
areas of non-linear behaviour (where small changes create disproportionate responses); 
co-evolving landscapes (which characterise the changing battlefield) and intangibles 
(such as morale, discipline and training) for which conventional land combat analysis 
models are particularly poor at investigating. 
 
There are a growing number of ABD’s under Project Albert, including the Irreducible 
Semi-Autonomous Adaptive Combat (ISAAC) model [1] and the Enhanced ISAAC 
Neural Simulation Toolkit (EINSTein) [1]. The NZ DTA has also recently developed the 
Map Aware Non-uniform Automata (MANA), to support their studies [2].  
 
1.2 Movement within ABD’s 

The User Manual of MANA [3] states that: 
 

“The most important action of an agent is to move.” 
 
This appears justified since being deliberately low-resolution means that the detailed 
physics of combat are largely ignored (or abstracted to simple constructs) and thus any 
emergent or interesting behaviour should appear as a result of the manoeuvring of the 
agents (in space and time) about the battlefield.   
 
Movement of agents within EINSTein and MANA ABD’s is based on a simple 
attraction-repulsion weighting system and an associated numerical penalty function. 
From its current location, the agent moves to the location within its movement range 
that incurs the least penalty. That is, the agent attempts to satisfy its personality-driven 
desire to move closer to or further away from other agents and either of the two flags. 
This algorithm is applied to each agent on both sides and each is moved to its new 
location. This process is repeated for each time step in the simulation.  
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The form of the penalty function implemented by both the EINSTein and MANA 
ABD’s is hard-coded. The user only has control over the value of the weightings 
towards the agents and flags. The user defines these weightings when a scenario is 
constructed and is chosen to represent surrogates for the tactics employed by the 
entities. For example, the EINSTein User manual [4] provides examples of aggressive 
(defensive) postures by assigning relatively large positive (negative) weights to enemy 
agents.  
 
Given the simplistic nature of the attraction-repulsion weighting system, this will be at 
best an approximation to the true behaviour of the entity being modelled. What is 
important then, is that the movement algorithm implements faithfully the relationships 
that the user believes he is modelling by assigning values to those weights.  
 
For example, consider the situation with a weighting of +40 towards allied entities, a 
weighting of –10 towards enemy entities, and a weighting of +20 towards the enemy 
flag.  The most natural interpretation of this situation is that the entity is four times 
more likely to move towards other allied entities than it is to move away from enemy 
entities, but that it is only two times more likely to move towards other allied entities 
than it is to move towards the enemy flag.  
 
However, there are two key factors which are not stated in the above interpretation 
that are important in terms of what the user believes is being modelled. These factors 
are the number of entities the agent is aware of (generally those within its sensor range) 
and the distances those entities are from the agent in question.  
 
For example, does the above weighting system interpret the total weight for five enemy 
entities as –50, or is it independent of the number of enemy entities observed (or is it 
some non-linear function)? 
 
Similarly, does the above weighting system degrade the weight towards enemy entities 
as their distance from the agent in question increases (and is this degradation a linear 
function), or is it independent of these distances? 
 
Both of these questions are important for any weighting system in general, but are 
particularly relevant for the systems that reside in EINSTein and MANA.  
 
 
1.3 Motivation and Scope 

The relative simplicity of ABD’s, in particular EINSTein and MANA, seems to have led 
to the general acceptance of their associated movement algorithms, without apparently 
much validation or analysis of behaviour.  
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However, counter-intuitive results from a recent study by the authors using the 
EINSTein ABD [5] suggested that the behaviours produced by its movement algorithm 
may not always be desirable or indeed what the user intended.  
 
This paper examines in detail the movement algorithms of two of the most popular 
ABD’s, EINSTein and MANA. Scenarios are presented in Section 2 that highlights quite 
clearly forms of unwanted behaviour. A simplified one-dimensional scenario is 
examined in detail to illustrate the two movement algorithms and to discover the 
causes of the unwanted behaviour.  
 
Two alternative movement algorithms (with variants) are then presented in Section 3 
as potential remedies. The first is a natural modification to both the EINSTein and 
MANA movement algorithms while the second is somewhat novel and is based on 
techniques for spatial interpolation. These alternatives are tested on the one-
dimensional scenario and are compared on a simplified (static) two-dimensional 
scenario.  
 
Section 4 then presents some comments on the meta-personality movement modifiers 
currently implemented in EINSTein and MANA as well as some thoughts on 
extensions to these penalty functions. Finally, some final thoughts are provided in 
Section 5.  
 
 
 

2. EINSTein and MANA Movement Algorithms  

2.1 Examples of Unwanted Behaviour 

 
Figures 1 and 2 below illustrate the counter-intuitive behaviour mentioned above. 
Red’s goal is to avoid Blue and get to the flag. Red are repelled from Blue (-20) and 
attracted to the flag (+100). Blue are attracted to Red (+50). In the first scenario Red has 
a sensor range of 10 and many agents achieve the goal and make it to the flag (mainly 
by skirting around the Blue group). The second scenario is identical to the first except 
that Red’s sensor range is increased to 20. However, despite their increased knowledge 
of the positions of Blue they now move directly into the position of the Blue group and 
are completely destroyed.  
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Figure 1Example of Counter-Intuitive EINSTein Behaviour -- Sensor Range = 10 

 

t = 60 

t = 30 t = 0 

t = 90 

 

Figure 2 Example of Counter-Intuitive EINSTein Behaviour -- Sensor Range = 20 
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Figure 3 illustrates a MANA scenario where the goal is for the Blue agent to reach the 
Red flag (weighting = +20) while avoiding Red (weighting = -10). Note that the Blue 
agent decides to go straight through the group of Red regardless of how many Red 
agents it sees (no attrition occurs as firepower is set to zero). 
 
 

  

 
 

t = 0 t = 20 

t = 40 t = 60 

Figure 3 Example of Counter-Intuitive MANA Behaviour 

 
 
2.2 Simplified One-Dimensional Scenario Analysis 

To illustrate the counter-intuitive behaviour than EINSTein and MANA can produce, a 
simple scenario is presented in Figure 1 below to allow the penalty calculations to be 
explicitly performed. 
 
To explore the reasons for this strange behaviour a simple scenario is presented in 
Figure 4 below to allow the penalty calculations to be explicitly performed. The single 
Blue agent is repelled by the Red agents (with weighting -10) and attracted to the flag 
(with weighting +20). Thus, there is a tension between wanting to move forwards 
towards the flag and remaining in place to avoid the Red agents. The decision that the 
Blue agent must make is whether to stay in place (remain at location 1) or move 
forwards (move to location 2).  
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Figure 4 Simplified One-Dimensional Scenario 

 
We will examine this scenario with two variants, one where Blue has a sensor range of 
three, (that is, it can only see the first Red entity), and another where Blue has a sensor 
range of six (and can thus see both Red entities). Each penalty calculation below shows 
the enemy and flag components separately, followed by the total penalty. The 
equations for the two algorithms are also given although restricted to the parts relevant 
to this scenario (the enemy and flag components). 
 
 
2.2.1 Penalty Calculations Using EINSTein Movement Algorithm 

The equation that EINSTein uses to compute the penalty at each potential new location 
is given by 
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Appendix A contains a direct extract from the EINSTein User Manual that details more 
information about its movement algorithm. Table 1 lists each of the variables in this 
equation together with their definitions.  
 
 

Variable Definition 
RS Sensor range of agent about to move 
E Number of enemy entities within sensor range 
WE Weighting towards enemy agents 
Di,new Distance to the ith enemy from the new location 
WF Weighting towards the flag 
DF,new Distance to the flag from the new location 
DF,old Distance to the flag from the current (old) location 

Table 1 Variables Associated with the EINSTein Penalty Function 

 
Table 2 tabulates the two components and the total penalty for the choices of staying in 
place (location 1) or moving forwards (location 2), for the cases where the sensor range 
is either 3 or 6.  
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Sensor Range Location Enemy Component Flag Component Penalty 
Current (1) -7.07 20.00 12.93 RS = 3 New (2) -4.71 18.00 13.29 
Current (1) -5.30 20.00 14.70 RS = 6 New (2) -4.12 18.00 13.88 

Table 2 EINSTein Penalty Function Component Calculations 

 
For the case where the sensor range is 3 (thus can only see the first Red agent), the Blue 
agent would decide to stay in place (since the penalty function is being minimized). 
However, for the case where the sensor range is 6 (and can thus see both Red agents), 
the Blue agent apparently decides to move forward. This behaviour is counter-intuitive 
and will be discussed in the next section. 
 
 
2.2.2 Penalty Calculations Using Mana Movement Algorithm 

The equation that MANA uses to compute the penalty at each potential new location is 
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Appendix B contains a direct extract from the MANA User Manual that details more 
information about its movement algorithm. Table 3 lists each of the variables in this 
equation together with their definitions.  
 
 

Variable Definition 
E Number of enemy entities within sensor range 
WE Weighting towards enemy agents 
Di,new Distance to the ith enemy from the new location 
Di,old Distance to the ith enemy from the current (old) location 
WF Weighting towards the flag 
DF,new Distance to the flag from the new location 
DF,old Distance to the flag from the current (old) location 

Table 3 Variables Associated with the MANA Penalty Function 

 
Table 4 tabulates the two components and the total penalty for the choices of staying in 
place (location 1) or moving forwards (location 2), for the cases where the sensor range 
is either 3 or 6.  
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Sensor Range Location Enemy Component Flag Component Penalty 

Current (1) -0.10 0.20 0.10 RS = 3 New (2) -0.099 0.198 0.099 
Current (1) -0.10 0.20 0.10 RS = 6 New (2) -0.099 0.198 0.099 

Table 4 MANA Penalty Function Component Calculations 

 
Here, for both cases (sensor range of 3 or 6) the Blue agent decides to move forward. 
This is different behaviour to that produced by EINSTein above. Furthermore, we note 
that the penalties do not change at all when the Blue agent can see both Red agents. 
This behaviour is also counter-intuitive and will be discussed next. 
 
 
2.3 Discussion of Behaviour 

Both algorithms above use scale factors in their penalty calculations. EINSTein uses the 
relative distance to the flag DF,new / DF,old but then scales the average distance to other 
entities (allies or enemy)  by RS√2. It is not clear to the authors the rationale for this 
choice of scaling. It does, to an extent, scale the new distances relative to the old 
distances and to the relative distances used for the flag. However, as we have seen 
above it doesn’t solve the problem entirely, and as will be seen below there is a simpler 
solution.  
 
EINSTein also scales the summation term by the number of entities (that is, it calculates 
the average distance). In effect, this implies that the Blue agent only effectively 
observes one Red entity when deciding on which move to make (and this one entity is 
positioned at the centroid of the Red entities within sensor range). 
 
These observations explain why the Blue agent remains in place for a sensor range of 3 
(because it “sees” one Red entity 3 units away) but moves forward for a sensor range of 
6 (because it “sees” only one Red entity 4.5 units away, when in fact there are two Red 
entities at 3 and 6 units away respectively). This again seems to be undesirable 
behaviour and not what the user would have intended when the original weights were 
entered. 
 
MANA does not use relative distance scaling for the flag or other entities in the fashion 
used by EINSTein. Instead, it scales all distances by the constant 100. That is, it treats 
all entities as if they were 100 units away. This means that the penalty for moving 
towards a Red that is 5 units away will be the same as the penalty for moving towards 
a Red that is 50 units away. Again, it appears to the authors that this choice is both too 
arbitrary and unnecessary. MANA also uses the average distance concept and thus also 
falls victim to the ‘centroid’ problem.  
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It is clear from this simple example that there are two factors in the penalty functions 
used by EINSTein and MANA which are fundamental in terms of implementing what 
the user believes is being modelled when attraction-repulsion weights are prescribed. 
These factors are the number of entities the agent is aware of and the distances those 
entities are from the agent in question.  
 
 

3. Alternative Movement Algorithms 

3.1 Dimensional Analysis and Relative Distance 

In the simple one-dimensional scenario above with a sensor range of three, Blue will 
choose to move forward if the absolute difference in the flag components between Z1 
and Z2 is greater than the absolute difference in the enemy components between Z1 and 
Z2. These two quantities are 
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where DF and DE are the distances to the flag and to the Red entity from the original 
location, respectively. Thus, Blue will choose to move forward when 
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The left hand side of this inequality implies that the weights obey a proportional or 
relative law. That is, the ratio of the weights must exceed a certain threshold in order to 
affect a move forward. This threshold is the left hand side of the inequality and the first 
point to note is that is independent of DE the distance to the enemy, but does depend 
on the unusual scaling factor discussed above. A similar analysis for the MANA 
penalty function generates similar findings.  
 
The most obvious and natural modification to the inequality above is 
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which implies that Blue will move forward provided the attraction towards the flag 
exceeds the repulsion from the enemy by more than the distance to the flag exceeds the 
distance to the enemy.  
 
 Generalising this, an alternative movement algorithm is proposed whereby the 
denominator of the enemy (and ally) components of the penalty are divided (or scaled) 
by Di,old (the distance from the current location to the location of the enemy). This 
would replace the artificial and arbitrary scaling factors of EINSTein and MANA 
(sensor range and the constant 100).  
 
The proposed alternative penalty function is then given by  
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This equation is dimensionally correct and using the absolute difference of distances in 
the numerators and the old distances in the denominator means that the change in 
distances (from the current location to the new location) are compared, and compared 
in a relative sense. An added bonus is that the penalty for staying in place is by 
definition equal to zero and thus needn’t be calculated (thus saving some computation 
time).  
 
The use of relative distances in this fashion appears to solve the scaling problem 
inherent in both EINSTein and MANA. Under this new penalty function, entities 
would then assign a stronger weight to those entities that are nearby than that to those 
far away. For example, in the simplified one-dimensional scenario above, when the 
Blue entity moves forward it is 33% closer to the first Red entity, only 17% closer to the 
second Red entity, and only 10% closer to the flag, and these relative percentages will 
be reflected under the new penalty function.  
 
 
3.2 Cumulative Penalties 

However, as presented above, this new penalty function still computes an average 
(relative) distance as it divides by the number of enemy within sensor range, and thus 
subject to the ‘centroid’ issue discussed above. It appears to the authors that a more 
usual form of the penalty calculation would use a cumulative function instead of an 
average. This would involve simply removing the denominator at the front of the 
previous equation, thus the alternative penalty function is then given by 
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However, at times it may not be desirable to use either the cumulative or average 
functional.  A generalisation of the above penalty function to incorporate this is given 
simply by 
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where α is a real value between zero and one. The cases α=0 and α=1 reduce to 
equations (4) and (3), respectively. Thus as α increases from zero the penalty function 
moves from using cumulative distances towards using the average distance.  However, 
moving away from using an average functional introduces issues regarding the flag 
that must be investigated.   
 
 
3.3 The Flag 

The problem is not so obvious with this simple scenario but it is apparent through 
examining the equations that for lower values of α and larger values of E the flag 
component of the penalty will become increasingly insignificant. Intuitively this may 
not be a problem because it seems logical that one should be more concerned with a 
large number of enemies than with a single flag some distance away. For this reason 
the current form of the penalty function was still investigated along with some 
additional forms.  
 
These additional forms attempt to allow the entities to scale the weight to the flag in 
the same way that the weight to the enemies (and allies) is scaled. Four alternatives for 
the flag component of the penalty are listed below along with a description of what 
effect they are attempting to achieve. Note that A is defined as the number of allies, or 
Blue agents. 
 
The first alternative is the default case, as given in equation (5) 
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and is given here explicitly only to allow comparison with the other alternatives. This 
form assumes that there is only one flag and the scaling factor is the distance to the 
current location to the flag.  
 
The second alternative is given by  
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which assumes that there is only one flag but uses a scaling factor which is the average 
distance of all detected enemy and ally entities. The effect of this in the simple scenario 
is that the flag is in essence now located between locations five and six, as illustrated in 
Figure 5 below. 
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Figure 5 Effect of the Second Flag Alternative 

 
The third alternative is given by 
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which assumes that there are as many flags as detected entities (E+A). In the simple 
scenario there would now be multiple flags (2 in this case as there are only two other 
entities detected) positioned at location 11 as illustrated in Figure 6 below. 
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Figure 6 Effect of the Third Flag Alternative 

 
The fourth alternative is given by 
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which assumes that there are multiple flags and uses the scaling factor that is the 
average distance of all detected enemy and ally entities. In the simple scenario there 
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would now be multiple flags (2 in this case) in essence now located between locations 
five and six as illustrated in Figure 7 below. 
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Figure 7 Effect of the Fourth Flag Alternative 

 
Thus, in summary the proposed alternative penalty functions are given by 
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where ZFj is one of the flag component alternatives above (j=1, 2,3,4). Each of these 
forms appeals intuitively to the authors to what is envisaged by the attraction-
repulsion weighting system. Neither could confidently be claimed as ‘correct’ and the 
others ‘incorrect’.  We thus examine the behaviours of all alternatives in Section 3.5 
below. 
 
 
3.4 Spatial Interpolation Technique 

Another possible algorithm, which also provides feasible behaviours, can be 
constructed using a spatial interpolation technique. A common problem that frequently 
arises in the study of spatially varying phenomena is to estimate the value of a variable 
at an unsampled location, or on a regular grid of unsampled locations to be used for 
contouring.  
 
The objective of estimating spatially varying phenomena is to produce a representative 
surface that captures the spatial variation of the data and is not recognizably 
inconsistent with that data, and to this end a large number of techniques have been 
developed (see [6] for a review). 
 
To estimate the value of a variable at an unsampled location it is intuitive to use nearby 
sample values and to do so in a linear fashion:  
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Here z* is the estimate of the true value z at a specific location x0; z(xi), i = 1,…,N are N 
nearby sample values at locations xi, and wi are the N weights to be chosen. The N 
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sample values to be used are determined by specifying some neighbourhood to be 
searched. The estimation problem is then to choose the weights wi so that the 
distribution of the estimation errors r (x0) = z*(x0) – z(x0) is minimized. 
 
Inverse distance estimators date back to the 1920’s and are still frequently used and 
form part of most commercial contouring packages. These techniques give greater 
weight to closer samples by assigning  
 

r
ii Kw −−= |||| 0xx    , i = 1,…,N 

 
where ||·|| is a distance norm chosen to account for possible anisotropies, r is a non-
negative parameter chosen to reflect the degree of spatial continuity, and K is a 
normalizing constant such that the weights sum to one for unbiasedness 
considerations.  
 
To use the concepts underlying the inverse distance estimators to produce a penalty 
function for a movement algorithm, we replace the values z(xi) with the weightings 
assigned to detected ally and enemy entities and the flag. Thus, within the sensor 
range, we ‘observe’ values of some variable (the penalty in this case) at a discrete set of 
irregularly spaced locations. Then, by applying the inverse distance estimator to 
approximate the variable at each of the possible new locations produces the required 
penalty values.  
 
Thus, a proposed penalty function based on inverse distance estimation is given by 
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where r is a user-specified rate factor. Note that there are two major differences in this 
equation to that used in inverse distance estimation. First, the normalising constant is 
not present. This is necessary for the situation where only the flag is visible to enable 
the agent to move in its direction (if assigned an appropriate weighting towards it). 
The second difference is the use of the factor α again in the denominators. To some 
extent this performs the function that the normalising constant is used for. More 
importantly, it is used here to provide a level of flexibility between using a cumulative 
and average penalty function.  
 
As with the relative distance penalty alternatives given above, the idea is that agents 
that are further away are given less weight. As r tends to zero, all entities are 
considered to be the same distance away and the local average is used (similar to that 
used by MANA). As r increases the reduction in weight towards entities further away 
becomes more and more significant. The best move in each case would be to the 
location with the highest penalty (as opposed to the more usual minimization). 
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This new penalty function may experience similar difficulties as before with regards to 
the weighting to the flag. The distance to the flag is generally much larger than the 
distance to nearby entities and as a result the weighting to the flag may again become 
insignificant. Using the same thinking as before, three alternative flag components are 
proposed in addition to that of equation (11) above, so that we have: 
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where DNF,new is the distance from the potential new location of the entity to a new 
imaginary flag. This new flag is positioned in line with the old flag but at a distance 
that is equal to the average distance that all visible entities are away from the entity in 
question. 
 
 
3.5 Simplified One-Dimensional Scenario Results 

The simplified one-dimensional scenario is re-examined with each of the new penalty 
functions. Three values of α (0, 0.5 and 1) and r  (0.1, 1 and 2) were used and the results 
are summarised in Table 5 below.  
 
 

 α = 0 α = 0.5 α = 1 
ZF1 SS SS SS 
ZF2 MS MS MS 
ZF3 SM SS SS 
ZF4 MM MM MS 

 r = 0.1 r = 1 r = 2 
IDE ZF1 SS SS SS 
IDE ZF2 MM MM MM 

Table 5 New Penalty Function Results on the Simplified One-Dimensional Scenario. 
Definitions: SM = Stay then Move, MS = Move then Stay, SS = Stay then Stay, MM = Move 

then Move 
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There are four possible combinations that could occur for the two cases of sensor range 
of 3 and sensor range of 6, respectively. The Stay then Move combination (listed as SM) 
is the only one that is definitely illogical. The Move then Stay (MS) possibility is logical 
while the other two (SS or MM), where the entity either stays or moves regardless of 
the sensor range, are also both feasible depending on the interpretation of the weighing 
system by the user. Recall that EINSTein produced the SM behaviour, while MANA 
produced MM.  
 
It is impossible from the results to say which scheme is the best, and this is certainly 
not the intent. However it is possible to state which schemes give counter-intuitive 
results and which ones give more display logical behaviours. The behaviour displayed 
by both ZF1 and ZF2 appears to be independent of the value of α and both give feasible 
results (SS and MS).  
 
For the ZF1 case it is quite logical that if the Blue entity sees a Red entity between it and 
the flag that it will stay in place, and likewise if there are two Red entities. The ZF2 case 
allows the Blue entity to move if there is only one Red between it and the flag but will 
not move if the number of Reds increases to two. Again this is quite feasible, which one 
is preferred depends on how the user would want the entities to behave in the given 
situation.  
 
The ZF3 case produced the same counter-intuitive behaviour as the EINSTein algorithm 
for the α=0 case. However this problem was rectified for values of α=0.5 and 1. The ZF4 
case was generally less cautious about making a move towards the flag. This is a result 
of having multiple flags placed at the location of the average distance to all entities.  
 
The results for the IDE ZF1 scheme seem to indicate a reluctance to move at all because 
of the presence of an enemy (or two) that is closer than the flag is. This may be 
intended by the user and therefore be perfectly legitimate. Meanwhile the results for 
the IDE ZF2 scheme show that the entity is always prepared to move forward as a result 
of the “closer” flag. The results for IDE ZF3 and ZF4 have been deliberately left out here 
because in all cases except one (α=0 and r=0.0001) the results for ZF3 were the same as 
ZF1. Similarly all moves for ZF4 were identical to ZF2. Each of the different IDE flag 
components, except for the case already mentioned, produced results that were 
independent of the value of α. 
 
 
3.6 Two-Dimensional Scenario Results 

In addition to the simple analysis above a second set of trials were run using a 24 by 24 
grid consisting of 60 enemy entities and 20 ally entities randomly distributed across the 
grid. For simplicity, these entities remain stationary throughout the trials. A flag was 
located at position (1,4) and the initial position of the entity was (24,12). The single 
entity whose path we wish to examine is attracted to the flag (with weighting of +100) 
and allies (with weighting of +20) and repelled from the enemy (with weighting of -50).  
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The paths for the different movement algorithms and various sensor ranges are shown 
in the figures below. For clarity, not all paths corresponding to all possible 
combinations of the various flag components and values of α are shown as many of 
these paths overlap or are very similar to others. Two separate graphs are shown for 
each sensor range for further legibility. 
 
Figure 8 displays the paths when the sensor range is equal to 10. The results show only 
two distinctly different paths being taken. Using the ZF3 flag component (multiple flags 
at the actual distance) allowed the entity to reach the flag. However of all possible 
combinations of flag components and values of α this was the only occasion when the 
flag was reached. When α was 0.5, flag components ZF1 (one flag, actual distance) and 
ZF2 (one flag, average distance to entities) began along the same path but stopped at 
around (18,6). 
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Figure 8 Variation in Movement Paths -- Sensor Range = 10 

 
It seems apparent that theses algorithms place more importance on staying close to 
other allies rather than pursuing the flag. However this also depends on the value of α. 
For the same two algorithms when α was set to zero the entity refused to move at all 
but when α was one, the entity followed a similar path to the dark Blue ZF4 path.  
 
This last path was the most common path among the new algorithms (including those 
not shown above) and was similar to both the MANA and EINSTein paths. It appears 
that these algorithms move the entity to a stage where they are reluctant to move, not 
only because of allies around them, but also because of enemies in front of them. This 
was also the case for all of the IDE algorithms (Figure 8 on the right). Whilst they do 
not follow the exact same path, most of them ended up at the same final position that 
the Mana and EINSTein algorithms produced. 
 
When the sensor range of the entity is decreased to five (Figure 9), two distinctly 
different paths are once again formed. The main difference here is that only the MANA 
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and EINSTein paths follow the upper path. They appear to get themselves into a 
position where they want to advance to the flag but the risk from the number of 
enemies surrounding them is too great. For the lower path it appears that the entity 
follows a certain path so as always to stay close to other allies and eventually comes to 
a situation again where the risk associated with moving towards the enemy is too 
great.  
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Figure 9 Variation in Movement Paths -- Sensor Range = 5 

 
It should also be noted that all of the new algorithms (including those not shown 
above) produced a very similar path regardless of the value of α of the type of flag 
component. Intuitively it appears that the lower path would be the safer, and thus 
more preferable, route.  
 
The IDE ZF4 algorithm produced a different path again which tended to go straight 
across the grid. The other IDE algorithms produced paths almost identical to the 
“safer” paths produced by the original ZF3 and ZF4 algorithms. 
 
When the sensor range was decreased further (Figure 10) the same two paths as for 
sensor range equal to five were formed. However this time the MANA and EINSTein 
algorithms did not choose the upper path. The only two cases where the upper path 
was chosen were when flag components ZF2 and ZF4 were used and α was one. All 
other algorithms chose the lower path.  
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Figure 10 Variation in Movement Paths -- Sensor Range = 2 

 
This is also the first example where the MANA and EINSTein paths differ. Whilst they 
initially follow the same general direction, the MANA path continues to the previously 
seen final position at (7,10) while the EINSTein path refuses to move any further than 
(17,15). All of the new algorithms also follow one of these to paths. The ZF1 and ZF3 
cases always stop at (17,15) regardless of the value of α, while the ZF2 and ZF4 cases 
finishes at, or near, (7,10) for α equal to 0 or 0.5.  
 
The IDE ZF4 algorithms produce a path where the flag is almost reached and is similar 
to the ZF3 path when the sensor range was equal to ten. The other IDE algorithms 
produce very similar results to the EINSTein algorithm. 
 
From Figures 8 -- 10, together with the complete lists of paths for all possible 
combinations of ZFi and α = 1, 0.5 and 1, some comparisons can be made. In all three 
cases flag component ZF1 with α equal to zero produced little or no movement at all. 
This seems to suggest that using the cumulative penalty (α = 0) requires a different flag 
component (higher weighting via either a closer distance or multiple flags) to allow 
movement. This is supported by the fact that in nearly all other cases for α equal to 
zero, significant movement occurred.  
 
It is also interesting to note that penalties ZF3 and ZF4 were independent of the value of 
α for two out of the three sensor ranges (ZF3 produced a different path for α = 0, sensor 
range = 10, while ZF4 produced a different path for α = 1, sensor range =2). ZF4 actually 
had an identical final position for every combination of α and sensor range except for 
the previously mentioned case.  
 
In terms of comparisons with EINSTein and MANA it should be noted that ZF4 with α 
equal to zero or 0.5 produced a similar (within one square) final position to the MANA 
algorithm for all sensor ranges. The EINSTein algorithm was mimicked across all 
sensor ranges by ZF3 (α = 0.5 or 1) and ZF1 (α = 1). This seems logical because as α 
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approaches one the algorithms become more like the EINSTein algorithm and use the 
average distance rather than cumulative distances. 
 
 

4. Other Considerations 

4.1 Meta-Personalities 

Meta-personalities are additional rules that may be used to alter the default personality 
of an agent depending on certain threshold conditions. They allow the agent to have 
some degree of adaptability to extreme situations. The three most common meta-
personalities (and which both EINSTein and MANA implement, but with slight 
variations) are the cluster, advance and combat meta-personalities.  
 
Some of the counter-intuitive behaviours that are produced by the EINSTein and 
MANA ABD’s can be partially corrected by using these meta-personalities. However, 
there are still some limitations and artificialities associated with these meta-
personalities.  
 
 
4.1.1 Cluster and Advance Meta-Personalities 

In both EINSTein and MANA the cluster meta-personality is activated when the 
number of allies within an agent’s threshold range (EINSTein) or sensor range 
(MANA) is above a user-defined threshold. When this occurs the weighting towards 
other allies is temporarily set to zero. This is intended to discourage the clustering of 
like-coloured entities above a certain density.  
 
The advance meta-personality is activated when the number of allies within the 
threshold range (EINSTein) or sensor range (MANA) is less than a user-defined 
threshold. When this occurs the weighting towards the flag (EINSTein) or next 
waypoint (MANA) is temporarily negated. This is intended to discourage the advance 
to the goal unless a certain level of support exists.  
 
The first observation to make is the different means of altering the default personality 
weightings (either set to zero or negated). It is not clear to the authors the rationale 
behind this seemingly arbitrary choice. It would appear to be more consistent to either 
both set to zero or to both negate the weighting.  
 
Even better perhaps would be to allow the user to choose the alternative weighting. 
While this increases the number of parameters the user has to specify, it does provide 
an increased level of flexibility to the behaviours modelled, and avoids unnecessary 
artificialities.  
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4.1.2 Combat Meta-Personality 

There also appears to be an inconsistency with EINSTein’s implementation of the 
combat meta-personality. This meta-personality is activated when the difference 
between the number of allies in the given agent’s threshold range and the number of 
enemies in the given agent’s sensor range is less than a user-defined threshold.  
 
It is not clear to the authors why either the threshold range is not used for both counts 
(as with the cluster and advance EINSTein meta-personalities) or the sensor range is 
used in both counts (as with the MANA meta-personalities).  
 
A problem can therefore occur when an agent has a large sensor range and thus 
possible for many enemy agents to be a long way from the agent. In this situation, the 
combat meta-personality could be activated and the agent not move forward since it 
can see a large number of enemy entities (due to its large sensor range). However, the 
agent doesn’t take into account the fact that these enemy entities are quite far away and 
in fact it may be quite feasible (or safe) to move forward.  
 
It would appear to be more consistent to use the same range (either threshold range or 
sensor range) when counting up the number of allies and enemies. MANA has no 
threshold range and uses the sensor range, however in the case of EINSTein it would 
appear more logical to use the threshold range. This would mean that entities would be 
more concerned about enemies that are closer than those further away.  
 
Also, as with the advance meta-personality, the weighting towards enemies is 
temporarily negated under the combat meta-personality and the same comments as 
above apply.  
 
It is also interesting to note that the combat rule only changes this weighting (i.e. 
towards enemies). It may be desirable for other personalities to be changed when an 
entity is out numbered, for example they mat have a stronger weighting towards allies 
or seek to improve their stealthiness (available only in MANA).  
 
It would also appear more intuitive for the threshold calculation to be based on a ratio 
rather than a difference. Currently if the combat threshold was set at three it would 
imply, for example, that four allies would attack one enemy, however it would also 
imply that 54 allies would attack 51 enemies, which may not be desirable. If the value 
three was interpreted as a ratio then there would need to be at least three times more 
allies than enemies to attack (irrespective of the absolute number). This appears to be 
more in line with historical (and current) warfare practices.  
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4.1.3 MANA Trigger States 

The comments above suggest that to remove the artificialities associated with the 
current implementation of meta-personalities within EINSTein and MANA, and to 
provide increased flexibility to the user, then more than a negation or a cancellation of 
the weightings towards enemy or the flag should be used. Indeed, substantial 
flexibility would tend to result if all of the default personalities, and even some of the 
agent’s characteristics, could be temporarily modified.  
 
Perhaps the simplest implementation of this would be via the use of the trigger states 
that MANA contains. Currently, MANA allows the modification of most of an agent’s 
properties, for a user-defined period of time, on the activation of certain triggers. These 
triggers currently include detecting or firing at an enemy or being fired upon by the 
enemy. These triggers are very much action-oriented and binary in nature (detected the 
enemy or not). However, there is no reason why the softer triggers of cluster, advance 
and combat (based on counts exceeding thresholds) could not be implemented.  
 
These meta-personality trigger states could be implemented for a period of one time-
step (to reflect the current implementation within EINSTein and MANA), after which 
the agent would revert back to its default state. However, it may be preferable in 
certain situations for this altered behaviour to continue for some longer time frame, 
and the implementation via MANA trigger states certainly allows this flexibility.  
 
 
4.2 Utility Curves 

At the moment both EINSTein and MANA, and the new penalty functions proposed 
above, implement a simple linear utility function. That is, if we denote X=Di,j/Di,o as 
the relative distance of the new location from the i-th entity to the current location from 
the i-th entity, then the penalty functions are based on the utility function W*(X-1), 
where W is the weighting assigned to the i-th entity type.  
 
This means that if the new location is such that the relative distance remains the same 
(Di,j=Di,o and thus X=1) then the change in utility is zero. This is perfectly reasonable. 
However, it also implies that to obtain ‘full’ positive utility (in the sense of receiving all 
of W) then the new location must be such that the relative distance is doubled 
(Di,j=2*Di,o and thus X=2). Similarly, it also implies that to obtain ‘full’ negative utility 
(in the sense of receiving all of - W) then the new location must be such that the relative 
distance is zero (Di,j=0 and thus X=0). 
 
It appears to the authors that there may be situations where this change in utility 
would not be linear. For example, it sounds equally intuitive that full positive and full 
negative utility be assigned if the relative distances were doubled and halved. This 
would require some form of non-linear utility function.  
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Since the exact form of this utility function may depend on the situation or scenario 
being modelling, it would therefore be more beneficial to allow the user to be able to 
define the form of the utility function for assigning the relative weights to entities 
based on distance. 
 
To maintain simplicity of design, it is proposed that the user be asked to select two 
points (Dmin and Dmax) that represent the relative distances (relative to a distance of one 
which assigns zero utility) at which the full positive and full negative weight should be 
given. From this data, a quadratic utility function can be constructed and subsequently 
used in the penalty function.  
 
It should be pointed out that a more recent ABD known as Socrates [7] does implement 
a non-linear utility curve, however it’s movement diagnostics are not as straight 
forward as the simple attraction-repulsion weighting system used in EINSTein and 
MANA which has been the focus of this paper. 
 
 
4.3 Stochastic Movement 

The MANA model has attempted to allow some form of randomness into the 
movement algorithm to prevent unwanted static behaviour. This is achieved 
essentially to limiting the number of decimal places kept in the penalty calculation, so 
that proportionally more ties are encountered and a random draw is used to select the 
new location.  
 
An alternative method proposed here is to interpret the (appropriately scaled) penalty 
at each new location as the probability of moving there. This appears to the authors to 
be a more natural and flexible approach, since all potential locations are candidates for 
the move selection but with appropriate relative frequencies.  
 
This approach has parallels with the technique of simulated annealing [8]. In both 
cases, it may be desirable for poorer solutions to be (temporarily) selected, in order to 
avoid being trapped in a local optimum and to increase the chances of discovering a 
better solution on the next penalty calculation.  
 
 

5. Summary 

Based on counter-intuitive results from a recent study conducted by the authors using 
the EINSTein ABD, the movement algorithms of that ABD and the MANA ABD were 
investigated.  
 
A simplified one-dimensional scenario was used to deduce the causes for the 
unwanted behaviour and some simple analysis led to a basic suggestion for 
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improvement to the penalty function based on relative distances. A more novel 
technique based on the concepts underlying spatial estimation was also proposed as an 
alternative.  
 
All of these techniques were then compared on both the simplified one-dimensional 
scenario as well as a static two-dimensional scenario. The results show that these 
penalty functions do not suffer from the counter-intuitive behaviours that appear to 
limit the validity of the EINSTein and MANA penalty functions.  
 
However, of these new penalty functions there has been no attempt to suggest which 
one is ‘correct’ or ‘best’, as this would be a futile exercise. The intent of this paper has 
been to illustrate the variability of movement paths that the alternative penalty 
functions can generate.  
 
Having achieved this, we then suggest that the correct approach is to make the penalty 
function a user-defined ‘parameter’, in exactly the same way that the entity capabilities 
and personalities are. At a minimum, it would make more explicit the assumptions 
made about the movement algorithm when one provides the results or conclusions of a 
study. Ideally, the robustness of these conclusions should be tested to variations in the 
movement algorithm, in the same way that sensitivity analysis is applied to other more 
traditional parameters.  
 
Some improvements to the current implementation of the meta-personalities were also 
made to improve their flexibility, and suggestions for extending the penalty function to 
incorporate non-linear utility and stochastic movement were also provided.  
 
The authors hope that any future versions of EINSTein, MANA or other new ABD take 
into consideration the points raised in this paper.  
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Appendix A:  ISAAC Movement Algorithm  

The following text is taken directly from the User Manual [4] for ISAAC Version 1.8.4 
dated April 1997. This ISAAC code forms the ‘engine’ of the EINSTein code and thus 
the movement algorithms used by both are the same. 
 
In the current version of ISAAC, each ISAACA can choose to move from its current 
position at time t -- say, (xt,yt) -- to any of the sites that are either a distance 1 (if the 
movement range is equal to rM=1) or 2 (if the movement range is equal to rM=2) from 
(xt,yt); see Figure 8. It can also select to "do nothing" and remain at its current position. 
Each site of the battlefield lattice may be occupied by at most one ISAACA at a given 
time. 
 
An ISAACA's personality weight vector is used to rank each possible move according 
to a penalty function. The penalty function effectively measures the total distance that 
the ISAACA will be from other ISAACAs (which includes both friendly and enemy 
ISAACAs) and from its own and enemy flags, each weighted according to the 
appropriate component of the personality weight vector, w. An ISAACA moves to the 
position that incurs the least penalty, or the move that best satisfies the ISAACA's 
personality-driven desire to "move closer to" other ISAACA's in given states and either 
of the two flags. 
 

 
The general form of the penalty function is given by: 
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where wi are the components of the personality weight vector and are Red and sred = √2 
rred, S sblue = √2 rblue,S  Blue scale factors, respectively, d[i;(x,y)] is the distance between the 
i-th element of a given sum and the ISAACA positioned at (x,y), Ni is the total number 
of elements within the given ISAACA's sensor range, and dnew and dold represent 
distances computed using the given ISAACA's new (i.e., candidate move) position and 
old (i.e., current) position, respectively. For example, the first summation appearing at 
the top of the above expression represents the sum of distances from the position (x,y) 
to all Red alive ISAACAs located within the sensor range box of position (x,y). In the 
case of a Red ISAACA, this sensor range box is defined by sensor range rred,S; in the case 
of a Blue ISAACA, it is defined by sensor range rblue,S. 
 
A "penalty" is computed for each possible move: Z1, Z2,..., ZN. If the movement range 
rM=1, N=9; if rM=2, N=25. The actual move is the one that incurs the least penalty. If 
there is a set of moves (consisting of more than one possible move) that incur exactly 
the same minimum penalty, an ISAAC randomly selects the actual move from among 
the candidate moves making up that set. 
 
Example 
 
Figure 10 shows a portion of the notional battlefield surrounding a Red ISAACA X 
positioned at (x,y). There are three Red ISAACAs (a,b and c at distances Da, Db and Dc 

from X, respectively) and two Blue ISAACAs (A and B, at distances DA and DB from X, 
respectively) within X's sensor range. 
 

 
Assuming that X's movement range rM=1, X's next move is determined by minimizing 
the penalty Z(x',y') that will be incurred by selecting each of the nine nearest 
neighboring sites, and (x’ = x, y’ = y) and (x’ = x±1, y’= y±1) (shown in gray in Figure 
10). The penalty is given explicitly by 
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where DR-goal and D0 R-goal are the distances from (x,y) and (x',y') to the Red goal, 
respectively, and DB-goal and D0 B-goal are the distances from (x,y) and (x',y') to the Blue 
goal, respectively. 
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Appendix B:  MANA Movement Algorithm  

The following text is taken directly from the User Manual [3] for MANA Version 1.0 
dated June 2001.  
 
The most important action of an agent is to move. The movement algorithm selects the 
grid square within its movement range that most satisfies its desire to move towards 
some entities and away from others. The current location is also considered, so the 
agent can stay put. 
 
The movement algorithm consists of the following steps: 
 

• Consider all moves within the movement range of the agent, including staying 
put. 

• Eliminate moves into locations containing other agents or impassable terrain. 
• Considering all the entities in range: decide on the most appealing of the 

permissible moves, using personality weights that represent a desire to move 
toward or away from agents, the waypoints, terrain or contacts on the 
Situational Awareness map. 

• Impose behaviour modifiers that change the basic behaviour (e.g. minimum 
distance to others, cluster constraints, and so on). If a number of moves are 
nearly equal, then choose a move at random from the attractive moves. 

 
Local sensor information takes precedence over information available to the agent from 
the situational awareness map. If an enemy is within sensor range, then the influence 
of the situational awareness is ignored. 
 
The penalty calculation finds the move with the least “penalty”. Moves are possible to 
grid squares within “movement speed” squares of the current location and not already 
occupied by an agent or impassable terrain. 
 
If several moves have a similarly low penalty, a move is chosen at random from the 
good moves. The “movement precision” parameter sets how wide the margin should 
be for accepting similarly good moves. Setting the movement precision to a low value 
will mean that most often only the best move will be chosen and the movement will 
appear very deterministic. If the movement precision is too great, the agents tend to 
wander about in a Brownian motion, as moves are selected at random. See section 3.3.1 
in [3] for a description of how to use the precision parameter. 
 
The tendency to move toward or away from an entity is constant with distance. For 
example, the weighting to move towards the next waypoint is the same whether the 
entity is three cells or 150 cells away from it. The penalty for moving to any grid 
location is the sum of 10 penalty calculations, corresponding to the 10 personality 
parameters listed in Table 1. 
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The algorithm used to calculate the penalty for a collection of entities within sensor 
range is the same for all 10 components. The general algorithm for calculating the 
penalty component associated with a candidate move is shown in Figure 9. The 
important term in the algorithm is: (NewDist+(100-OldDist))/100. 
 
This treats all entities as if they are about 100 units away. If NewDist < OldDist and a 
move closer is desirable, the penalty term will end up slightly less than 1.0. If NewDist 
< OldDist and a move away from the entity is desirable, a penalty term of slightly 
greater than 1.0 will result i.e. greater penalty. 
 
 

 
 
The penalty for moving towards or away from other agents is normalized by the 
number of agents (the last line of Figure 9). For example, if I am an agent attracted to 
friendly agents, I seek to minimize my average distance to friendly agents within my 
sensor range. However, a number of constraints can modify this attraction. The 
minimum distance to friends/enemies range sets a radius to other agents, inside which 
the penalty is negated. The check against minimum distance is made for every agent 
within sensor range. If an agent is within the minimum distance, it penalty is negated 
before adding to the sum for the friends penalty component. 
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