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Abstract 

Analysis of warfare data provides compelling evidence that intensity of conflicts 

obeys a power law (fractal) dependence on frequency. There is also evidence for the 

existence of other power-law dependences and traits characteristic of high-

dimensional chaotic systems, such as fat-tailed probability distributions and 

intermittency in warfare data. In this report, it is discussed how a cellular automaton 

model used to describe modern manoeuvre warfare produces casualty distributions 

which exhibit these properties. This points to a possible origin of the characteristics of 

the larger timescale data. More interesting, the techniques of fractal analysis offer a 

method by which to characterise these behaviours, and to quantify the difference 

between models based on complexity theory (such as cellular automata models), and 

more traditional combat models based on the physics of military equipment. 
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1. Introduction 

Application of fractal methods to describe the statistical distribution of the intensities 

of wars has been discussed in this journal by Roberts and Turcotte1. Their analysis 

showed that fractal dimensions exist for such data, confirming the observation of 

Richardson that warfare statistics obey power laws2,3.  

Other types of power laws have also been identified in combat data, such as a non-

integer power-law relationship between infantry force ratio (i.e. the number of 

attackers to defenders) and attack casualties4,5. These relationships have an interesting 

and natural geometric interpretation in terms of the fractal formalism6. 

New Zealand Defence Force�s science organisation, the Defence Operational 

Technology Support Establishment, has been comparing the degree to which 

conventional combat models versus the methods of complexity theory are able to 

produce statistics that resemble these results7.  

In particular, investigations have centred on a cellular automaton model called ISAAC 

(Irreducible Semi-Autonomous Adaptive Combat)8. The last two decades have seen a 

growing interest in the use of cellular automaton models to describe a variety of 

problems, such as turbulence, forest fires9,10,11,12, traffic jams13,14,15, sand piles16, and 

air traffic17, particularly after the work on �self-organised criticality� by Bak et al.. 

Such models have also caught the attention of defence technology agencies18,19,20,21,22.  

The ISAAC model was developed as part of the US Marine Corp Combat 

Development Command�s Project Albert23 by the Center for Naval Analyses. Weapon 

systems are not explicitly described within the model, which relies on a high level of 

abstraction. Rather, the model is intended as a �distillation� of the key ingredients of 
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combat. Yet despite this simplicity, the model is capable of demonstrating a high 

degree of complexity. 

The failure of more conventional combat models, despite their high level of physical 

detail, to describe the ability of units to react and organise themselves to fit a 

particular situation is a serious short-coming in representing reality. This leaves the 

analyst with a very precise picture of the outcome of one particular battle fought in a 

few particular ways with certain pieces of equipment modelled to some 

approximation of reality. Indeed, a growing number of military experts24,25,26 have 

shown frustration at the fire-power centric models which completely fail to explore 

how a poorly equipped army might adapt to prevail against a superiorly equipped foe, 

as in Vietnam. 

The difficultly cellular automaton, and more generally �multi-agent� models, face in 

gaining acceptance in the military operational research community is that it is hard to 

justify why they should be preferred over the more comfortable and predictable 

physics-based models. In short, there needs to be a better theoretical understanding of 

the properties of automaton models before they can gain wider acceptance. The work 

in this paper outlines how the methods of fractal analysis are proving a useful tool for 

characterising these differences, and furthermore, improving the understanding of the 

interaction between automata entities. 

2. Automaton Combat Model 

Here, not much detail will be given of the ISAAC model. The reader is referred to 

Ilachinski8 for more detail. Additionally, the model itself may be downloaded from 

CNA�s Website (www.cna.org/isaac), which contains information on the workings 

and philosophy of the model. 
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Each automaton�s behaviour is governed by a set of parameters that determine its 

propensity to move towards friendly or enemy units, and towards its objective. A 

further set of parameters act as conditional modifiers to this process. A cluster 

parameter �turns off� the automata�s propensity to move towards friends above some 

maximum cluster size; another parameter prevents automata moving towards their 

objective without a minimum number of friendly units accompanying it; and another 

determines the minimum local numerical advantage a group of automata require 

before engaging the enemy in combat.  

A final set of parameters describes the basic capabilities of automata, such as weapons 

range, sensor range, movement rate, single-shot kill probability, defensive factor and 

maximum number of simultaneous targets that can be engaged. The automata also 

possess the ability to communicate the position of enemy/friendly automata to 

friendly automata within their communications range. 

With these parameters, a wide set of behaviours can be induced. Even so, the version 

of the model discussed here is somewhat limited, and is not intended to describe every 

aspect of a military operation. Already, several new models are under construction 

that will improve functionality. However, for the purposes of this report, ISAAC does 

show interesting behaviour, particularly for fluid situations resembling modern 

�manoeuvre warfare�. 

Fig. 1 illustrates such a generalised concept of operation. Here, the Blue force must 

manoeuvre its way through a dispersed Red force to reach some objective (at the 

bottom of the frame). Various elements of the Red force react to the Blue force as it 

comes within sensor range, and Blue in turn reacts as Red surrounds it. Table 1 

contains the values of the ISAAC parameters used to produce this run. 
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The personality rules of the simulation impose structure on the distribution as 

automata are attracted towards/repelled by enemy/friendly automata. This leads to 

groupings of automata into a complicated hierarchy of clusters that may �cooperate� 

in attacks on Blue automata27. The degree of clustering on the battlefield can be 

measured by obtaining a fractal dimension for the distribution, using a standard box-

counting technique28 (using just the Red forces). The box-counting fractal dimension, 

D, is defined here as: 
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(where d is the width of the box, and N the number of boxes required to cover all the 

automata on the �battlefield�). D is a power-law exponent, since: 

 DddN −=)(  (2) 

In order to accurately obtain a fractal dimension representative of the distributions 

that evolve from a particular set of parameters, a large ensemble of distributions must 

be used, and an average D found. This technique reveals a short scaling range for 

which D was estimated as 0.70 for the case discussed.  

An argument can be made that the function describing the attrition rate should then 

depend on D7. In a fixed time interval, a Blue automaton�s �sensors� on average map 

out an area (box) proportional to the speed it is travelling. The density of Red 

automata � if they are encountered � is related to the number of boxes of this size 

that actually contain automata. But this has a non-integer power law dependence on 

the size of the box, and hence on the time interval (i.e. tl ∝  if l is the width of the 

box, and t the time interval). In such a case, the attrition rate function depends on: 



 7 

 ),( box
D

red
B ntkf
t

n −∆=
∆

∆   (3) 

where nB is the number of remaining Blue automata, kred is the probability of a Red 

automaton killing a Blue automaton within its detection and firing range with a single 

shot, nbox is the average number of Red automata contained in just those boxes that 

contain automata, and the size of the box is the area an automaton typically maps out 

in a period ∆ t. If there exists an ensemble of runs for which the distribution of forces 

that evolves produce a similar value for D, we hypothesis that for this ensemble the 

distribution of casualties depends only on k and ∆ t �D, and has statistical moments 

which scale like: 
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where q and r are non-integer powers related to D, the angled brackets denote an 

ensemble average, and the ensemble is conditional on Blue encountering Red in 

clusters of size nbox.  

3. Properties of Model Data 

Fig 2. shows the probability density for the number of Blue casualties suffered by the 

500th time step of the model run shown in Fig. 1. The distribution is based on 2000 

runs. The important point is that by this time step (and indeed, well before), the battle 

has run its course, so that further casualties are unlikely (i.e. Red and Blue are no 

longer interacting). Casualties do not necessarily reach 100 per cent (or some other 

arbitrary level), because the Blue force often breaks through to its goal, or otherwise 

avoids encountering concentrations of Red. Thus the distribution represents the 
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probability of ending a run in a particular state. Moreover, Blue only reaches a given 

level of casualties for a certain ensemble of runs, and these runs represent the 

occasions where Red was able to concentrate its firepower sufficiently to inflict this 

level. We may explore the nature of this ensemble by measuring attrition rate in terms 

of time taken to reach that level of casualties, excluding runs that do not. 

Fig. 3 plots attrition rate as a function of k, calculated in this way, for the ensemble of 

runs with greater than 25 per cent Blue casualties. A further constraint on the 

ensemble was that this casualty level had to be reached during the manoeuvring stage 

of the simulation. Because the Blue automata stick close to the goal once they reach 

it, they are vulnerable to further attack if Red units drift down into this area. However, 

this is not the situation we are trying to model, so the arguments above do not apply. 

Hence where 25% casualties are reached as a result of this drift down behaviour, the 

runs were ignored. 

The values for q may be found by fitting straight lines on the log-log plot of attrition 

rate versus k. Here the value for q was approximately 0.25. Note that above a certain 

value for k, the power law breaks down, with the slope tending to zero. This 

represents the case where the kill probability is sufficiently high that Blue is being 

killed almost immediately after encountering Red, so that increasing k has little 

further effect.  

By contrast, a distribution of casualties from a case where each side is simply lined up 

to �shoot it out� is also shown in Fig. 2. Note that most conventional combat models 

are little more sophisticated than this approach29,30,31,32,33. A spread of outcomes is 

expected after a given period of time, but the level of casualties at that point 

represents a �snapshot� of casualty levels on the way to some arbitrary withdrawal 
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level. The fixed time interval used to produce the distribution shown in the plot was 

the mean time required to run the model to reach the same mean casualty level as for 

the fractal distribution case shown Fig. 1. Clearly, this distribution of casualties was 

quite different from the case where the forces had a fractal distribution, with the 

fractal case having a much longer �tail�.  

Fig. 3 also includes the attrition rate as a function of k for the �shoot it out� case. Note 

that for the ensemble used for this case, every run reached 25% casualties (though, in 

principle, some cases never reach this level, if, say, one side has sufficient luck that it 

eliminates its opponents before this happens). The value of q for this data was 

approximately 0.9.  

In the previous section, it was supposed that the value of q depended on the fractal 

dimension of the distribution of forces. There appears to be evidence for this in other 

studies conducted with this model. For example, a similar operational scenario to that 

described above consisted of a Blue reconnaissance force represented by four Blue 

automata operating against a Red counter-reconnaissance force of 16 automata34. The 

Red force was modelled with and without communications. Clearly, communications 

has an effect on the degree to which Red is able to cluster to concentrate its firepower, 

and hence on the fractal dimension of the distribution of forces. The q values for the 

two cases were different, with attrition rate falling less rapidly as the value of k was 

lowered for the case where communications were on than when they were off. 

Eq. (4) in the previous section implied that the attrition function also possesses fractal 

scaling structure. Fig. 4 shows the number of casualties per unit time step for the 

fractal case and for the shoot-it-out case. Here, in order to illustrate the temporal 

structure of the attrition function, it was necessary to increase both the number of 
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automata involved to 60 on each side, and the kill probabilities of each side 

(otherwise, the casualty data would be too sparse). For the fractal case, the casualties 

occur in a burst-like, non-systematic manner. By comparison, the shoot-it-out case 

produces a gradually declining attrition rate as the number of automata falls. 

Fig. 5 shows how the second-order moments of the data scale as a function of  t. The 

plot is actually the average of 40 plots produced from 40 runs of each case. The 

difference in the power laws produced reflects the difference in the temporal 

structure. For the fractal case, r (D, 2) was −0.24, while for the �shoot out� case the 

scaling did not produce the required straight line. 

4. Conclusions 

The main result presented here is that automaton combat models can generate fractal 

distributions of forces, which in turn affect the attrition rate of the automata. In 

particular, the non-integer power law that describes the attrition rate of certain 

ensembles seems to result from these fractal distributions, and is extremely significant 

for combat analysis.  

It is tempting to see a relationship in the data suggesting that q (D, 2) ≈ − r (D, 2) ≈ 1 

− D. However, the values obtained for q, r and D were some 10 to 20% out for this 

relationship to hold. While this might simply reflect that the estimates for the fractal 

dimensions were poor for this data owing to the size of the datasets, or other equally 

practical problems affecting their estimation, it seems more likely that if this 

relationship does indeed hold, it only does so for some idealised ensemble. On the 

whole, the ISAAC model produces the fractal behaviour described for only brief 

periods of the run. The fractal distribution might be interpreted as a case of self-
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organised criticality, as has been claimed to exist for other automaton models. 

However, the rule set tends to cause the behaviour to �collapse� into non-complex 

situations, where, for example, the automata simply form a single clump at some end 

point. 

In terms of combat modelling, the implications of these results are that a Red force 

with a relatively poor kill probability may do much better than suggested by a straight 

shoot-out approach for certain ensembles of runs. This is explained by the tendency of 

the automata to cluster together to concentrate firepower, rather than simply being the 

result of a series of �lucky shots�, as would otherwise have to be the case.  

The behaviour implies that for these models temporal and spatial correlations are 

critical and fat-tailed distributions are prevalent. Although degree of intermittency 

was not examined specifically in this report, there is also evidence that it plays an 

important role for this model6,35.  

This may go some way to explaining the occurrence of power laws in real combat 

data. 

What is particularly useful about this behaviour is that the attrition function may be 

suitable to be described by the same sort of fractal cascade models that have been 

successfully used to describe turbulence and other kinds of geophysical signals36,37. It 

also raises the question of what the suitability of cascade models to describe this sort 

of automaton model says about the broader use of cascades models. Specifically, are 

cascade models simply a useful statistical �trick� to generate scaling data, or are they 

a valid physical model in their own right? Clearly, for the model examined here, no 

explicit �top down� cascade process occurs. Rather, it is a �bottom up� process. 

However, a casual observer with no knowledge of the model might speculate that a 
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cascade process was in operation, with clusters of automata splitting into smaller 

clusters, which themselves split into smaller clusters, etc, as the battle evolves. 

Perhaps, it is a matter of perspective. 
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Figure 1: An evolutionary snapshot of an ISAAC run. 
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Figure 2: Casualty-level probability densities for the fractal and shoot-out cases. 

Each distribution has a mean of 0.15. 
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Figure 3: Attrition as a function of k for the ensemble of runs which reached 25% 

Blue casualties for various cases. 
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Figure 4: Time series of casualties and mean casualty rate for fractal and shoot-out 

cases. 
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Figure 5: Scaling of the second-order moment of the time series data shown in  

Fig. 4. 
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Personalities: weighting towards ... (threshold range = 5)  

Alive/Injured    Red Alive/Injured Blue Red flag Blue flag 

Red 10 40 0 0 

Blue 40 10 10 0 

 Meta personalities 

 Cluster Advance combat 

Red = Blue 3 1 3 

 Attributes 

 Fire range Sensor range Movement rate k (baseline) 

Red = Blue 3 5 1 0.05 

 Initial distribution (battlefield size 120x120) 

 Centre position Size 

Red 60,60 30,30 

Blue 60,105 15,15 

Red flag 60 1 

Table 1: ISAAC parameters for run shown in Fig. 1. 
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