
Feasibility and Implementation Study of Adaptive
Learning to Agent Based Models

Hussein Abbass and Michael Barlow
abbass@cs.adfa.edu.au, spike@cs.adfa.edu.au

School of Computing Science
Australian Defence Force Academy

University of New South Wales
May 2002

Contents

Table of contents i

List of figures ii

List of tables iii

Acknowledgement iv

List of Abbreviations vi

1 Introduction 1
1.1 Purpose of This Document . 1
1.2 Introducing the Project . 1

1.2.1 Mana . 1
1.2.2 Research Objectives . 3

1.3 The Movement Algorithm . 4

2 Machine Learning With Agent Based Distillations 5
2.1 Concepts in machine learning . 5
2.2 Is learning an optimization problem? . 6
2.3 Potential use of this reports’ outcome . 6

3 Outline Of Approach 8

4 Preparing The Problem 11
4.1 Re–visiting the Move Equation . 11
4.2 Criteria of Success . 11
4.3 Pre–processing . 12

4.3.1 Translation . 12
4.3.2 Determining the Center of Forces . 13
4.3.3 Reflection . 14
4.3.4 Inputs . 14

i

5 Potentially Suitable Learning Algorithm 16
5.1 Markov and Hidden Markov Models (HMMs) . 16
5.2 Artificial Neural Network . 18
5.3 Decision Trees . 18
5.4 Evolving Neural Networks Approach . 18

5.4.1 Definitions . 19
5.4.2 The Evolutionary Neural Network Algorithm 19
5.4.3 Applying the method in MANA . 21

6 Insight Extraction From The Learner 22
6.1 Boolean Rule Extraction . 22
6.2 Validity Interval Analysis . 23
6.3 Rulex . 24
6.4 C-Net . 25

7 Implementation - A Follow-on Study? 27
7.1 Issues in Implementation . 28

8 Conclusion And Future Work 30
8.1 Research Questions . 31

References 33

ii

List of Figures

3.1 The 2-phase process in using a machine-learner: training and application. 9

5.1 A 6-state, left-to-right HMM . 17

6.1 The C-Net algorithm . 25
6.2 The C-Net conceptual representation. 26

iii

List of Tables

1 List of abbreviations used throughout the report . vi

iv

Acknowledgment

In acknowledging our debt to all those who helped to make this project a memorable intellectual
experience, we wish firstly to record our deep gratitude to Dr. Andrew Gill for initiating this project
and being a continuous source of support and guidance all over the course of this research.

Our thanks to all the staff members of the School of Computer Science, at the Australian Defence
Force Academy, University of New South Wales. A special mention goes to Charles Newton for his
continuous support.

We are indebted to our families who fed our souls during those hard times while undertaking this
research with constant encouragement, patience, understanding, and love.

Our final acknowledgment of sincere gratitude goes to the Commonwealth and The Defence Science
and Technology Organization (DSTO) for providing us with the necessary financial support to un-
dertake this research.

v

List of Abbreviations

ADFA Australian Defence Force Academy
ANN Artificial Neural Networks
CAS Complex Adaptive Systems
DOTSE Defence Operational Technology Support Establishment
DSTO Defence Science and Technology Organization
EANN Evolutionary Artificial Neural Networks
EC Evolutionary Computations
HMM Hidden Markov Models
LOD Land Operation Division
MANA Map Aware Non-uniform Automata
RL Reinforcement Learning
SA Simulated Annealing
SI Swarm Intelligence
UNSW University of New South Wales

Table 1: List of abbreviations used throughout the report

vi

Chapter 1

Introduction

1.1 Purpose of This Document

Dr. Andrew Gill from the Defence Science and Technology Organization (DSTO) approached the
School of Computer Science, the University of New South Wales (UNSW), at the Australian De-
fence Force Academy (ADFA) campus in Canberra, seeking technical advice regarding co-evolution
of parameters in multi-agent environments. The School possesses a wide expertise in the area of
Complex Adaptive Systems (CAS) with its internationally recognized research in Evolutionary Com-
putations (EC) and Swarm Intelligence (SI).

The project was forwarded to two school members; Dr. Hussein A. Abbass who is an expert in
the area of CAS and Dr. Michael Barlow who is an expert in the area of agent distillation. Both
Dr. Abbass and Dr. Barlow have experiences with wargaming systems and understanding with the
problem domain.

In the rest of this chapter, the project is introduced in Section 1.2 followed with the movement
algorithm, proposed by Dr. Gill, in Section 1.3.

1.2 Introducing the Project

1.2.1 Mana

Map aware non-uniform automata (MANA) [14] is an agent-based distillation (ABD) system de-
veloped by Roger Stephen and Michael Lauren of the Defence Operational Technology Support
Establishment (DOTSE) New Zealand. It is one of the most commonly used distillation systems
by people performing Operational Analysis - sharing that distinction with SOCRATES and EIN-
STein. MANA not only has an active “user community” but it is well supported by its authors - a
number of additional features and new versions of MANA have appeared. That situation is likely

1

to continue for the foreseeable future. [12, 13]

Agent-based distillation systems are abstracted simulations of conflict between two or more forces.
The features that, taken together, distinguish them from more traditional “constructive” simula-
tions are:

1. Agent-based: Battlefield entities are represented by agents.

2. Simplicity: Each agent follows a simple set of rules.

3. Emergence: Battlefield behavior emerges from the interaction of the agents - it is not “pre-
programmed” into the agents.

4. Abstraction: Battlefield entities have their capabilities represented in an abstract manner.
There is not necessarily a 1-to-1 mapping between a real-world entity (e.g., tank) and one in
the distillation. Similarly, measures of capability within the simulation tend to be unitless.

5. Ease-of-Use: Distillation scenarios are quick and easy to design and setup.

ABDs have received considerable interest from sectors of the Operational Analysis community in
the last two to three years. This is attributable to a number of factors:

1. Rapid Prototyping - The ability to rapidly explore a large parameters space so as to obtain
insights necessary to guide more detailed analysis. In this context ABDs are seen as the most
abstracted element in the hierarchy of simulation that is sometimes known as operational
synthesis.

2. Nonlinearity - The apparent ability of distillations to capture the essential and well-known
non-linearity of modern battles.

3. Intangibles - The potential of ABDs to begin to quantify the effects of intangibles such as
training, morale, and leadership upon battle outcomes.

4. Coevolution - The ability of ABDs that sees the actions of both sides alter in response to
their perception of the enemy’s actions. That is agents do not make decisions in isolation but
are influenced by their knowledge of teammates’ and enemies’ actions.

MANA is a “2nd generation” ABD expanding on the principles validated by ISAAC and EINSTein
[9]. Its origins are still strongly rooted in the cellular automata approach but it incorporates a
number of additional features. It is based on CAS rather than conventional combat models. The
differences between the two are presented in [11]. MANA focuses on modelling squad-level scenarios,
though it is capable of modelling more strategic conflicts also. One of the chief features employed to
model these tactical-level conflicts is the incorporation of a group situational-awareness map. This

2

is a shared map that represents the knowledge agents on a side possess about their environment. As
noteworthy elements in the world are discovered, these are stored in the situational awareness map.
Once they have been added, they decay as time passes so that more recent ‘memories’ are given
greater consideration than older ones, and ‘memories’ of a certain age are disregarded or forgotten.

1.2.2 Research Objectives

Adaptive learning is one of the three stated research thrusts of the US Marine Corps Project Albert
research initiative. However, to date it appears to have received little attention but also offers
significant potential to take the project to the next step. ADFA has previously researched this
area, in terms of the architecture and frameworks, and the mathematical techniques appear to ex-
ist (though probably require some modifications) – however it remains to actually implement the
concepts within a multi-agent simulation. The project seeks to engage appropriate researchers to
develop mathematical or computational techniques for adaptive learning within multi-agent simu-
lations.

Adaptive learning seeks to allow each agent to vary the parameters that it has direct control over,
during a simulation instance, in order to learn from past experiences and to adopt improved agent
behavior. The primary parameters of interest are those that describe the tactics adopted, but also
of interest are the parameters that control the state transitions as well as those which describe the
movement algorithm used.

The research objectives of the project are as follows:-

1. Initially focus on the mathematical technique of reinforcement learning and determine its
suitability to enable adaptive learning within multi-agent simulations.

2. Produce adaptive learning algorithms, either from reinforcement learning or from other ap-
propriate mathematical or computational fields, which can be most easily implemented within
multi-agent simulations.

3. Detail the requirements for modifications, if any, to multi-agent simulations to enable the
inclusion of the adaptive learning algorithms produced.

4. Provide a description of the potential uses and benefits of the adaptive learning algorithms
developed for multi-agent simulations.

5. The project deliverable is a written report detailing the research results against each of the
four objectives above.

3

1.3 The Movement Algorithm

In MANA, an agent decides on its next move - to a unoccupied cell within the movement range
- using personality weights and behavior modifiers. A penalty function is used to estimate the
potential of each move. Let us define the following:-

Znew the new measure for change in penalty by moving to location new
Znew the old measure for change in penalty by moving to location new
Di,new units for candidate location new to entity i
Di,old units for current location old to entity i
Df,new penalty of flag f at position new
Df,old penalty of flag f at position old
Directioni represents the attraction, (1) if Di,new is less than the threshold and (-1) otherwise.
WE weight assigned to enemy
WF weight assigned to friendly flag
E number of enemy agents
F number of friends agents
α parameter between 0 and 1
r parameter between 0 and 1

The move with penalty less than some threshold is selected and ties are broken at random. The
equation for calculating the penalty in MANA is

Pnew =
1

E + F

E+F∑
i

Directioni × Di,new + (100.0−Di,old)

100.0
(1.1)

The following equation is proposed by Dr. Gill and calculates the change in penalty if the agent
decides to move from location old to location new.

Znew =
WE

Eα

E∑
i=1

(
Di,new −Di,old

Di,old

)r

+ WF

(
DF,new −DF,old

DF,old

)r

(1.2)

After calculating the change in penalty for each possible move in the neighborhood, the agent uses
the following function to probabilistically decides on a suitable move.

P (Move = i) =
exp(−Zi

τ)

∑I
j=0 exp

�−Zj
τ

� , i = 0, . . . I (1.3)

where τ represents a temperature–like effect as in Simulated Annealing (SA) to balance exploitation
and exploration of search.

4

Chapter 2

Machine Learning With Agent Based
Distillations

2.1 Concepts in machine learning

In this section, we will introduce different concepts in machine learning that will be used in the rest
of the report.

In machine learning, each input vector is called an instance, or input pattern, and the output is
called an output pattern. The input-space is usually mapped to some features for the learning
problem; these features construct the feature space. The set of all possible models that can map
the feature space to the output space forms what is known as the hypothesis space. The process of
updating the split points in a decision tree, the centroid in a cluster algorithm and the weights of a
neural network until the network correctly maps the inputs to the outputs is called learning. The
learning algorithm is called learning machine.

The data are usually partitioned into three sets, a set available for the learning machine for learning
the function called the training set, a set for validating the model called the validation set, and a set
for testing the generalization of the model called the test set. By generalization we mean the ability
of the learning machine to give the correct output on unseen data (data which are not included in the
training set). The learning machine is said to over-fit if it is biased towards the training set instead
of learning the underlying function; that is, it memorizes the training set and does not generalize
well over the feature space. A simple example to illustrate over-fitting is giving the machine the
multiplication table and instead of learning how to multiply two numbers, it memorizes the input
output pairs. More formally, over-fitting or over-learning is a situation where the learning machine
learns idiosyncratic features of a training set that have no discriminative value in the operational
environment.

5

2.2 Is learning an optimization problem?

There are major differences between optimizing a function and learning a function. In optimization,
we are usually given the function to be optimized; therefore, there is no doubt in the underlying
function. In other words, if we are given two points on the function, we can easily and undoubtedly
conclude which point is better. For example, in the case of minimization, given two points x1 and
x2 for the function f(x), it is straightforward to conclude that x1 is better than x2 if f(x1) < f(x2).

In learning, we search for a function which if used to map the inputs to the outputs, the error will
be minimum. Unfortunately, finding the function which minimizes this error alone is nontrivial and
is not a simple optimization problem because of the following:

1. There is no guarantee that this function is unique; there may exist hundreds of functions with
very different characteristics and still do the mapping correctly.

2. Usually, we have a sample of the points and not the whole input domain of the function.
This entails that there is always uncertainty whether the mapping we will end up with is the
desired function or not.

3. Real life data is noisy. Noise can simply be defined as random variations in the data that we
cannot associate its causes with any of the inputs. For example, data collected from sensors
is usually noisy. Because of noise, it is not preferred in machine learning to choose a learning
machine that maps the data with 100% accuracy. The reason for that is we know in advance
that the data has noise and by fitting the data completely, we run into the risk that the
machine will not perform equally on unseen data (generalization). In addition, usually we do
not have a clue of how much this noise is.

In summary, a machine learning problem is very different from an optimization problem. A tech-
nique which can find the optimal solution of an optimization problem very accurately may not be
suitable for machine learning; simply because it will over-fit the data.

2.3 Potential use of this reports’ outcome

The outcome of this project is a learning machine that is able to map certain situations (states)
to some actions (decisions). It is like a supervisor who watches how the work is going and tries to
undertake corrective actions to get to a final state that is close enough to the desired state.

The learning machines which will result from this project will be used as control mechanisms during
the game. They will act as a supervisor who is watching the wargame and decides on how to change
the parameter values to reach the goal (winning).

6

A number of techniques exist to model this virtual supervisor. In reinforcement learning, the super-
visor policy is some sort of a decision table (called optimal decision policy), when the environment
is in state i, the next state is chosen from this table to be j. This sort of mapping is very relevant in
a grid/cellular environment where each cell represents the agent’s state and the transitions between
cells represent the agent’s actions. However, if the state space is continuous, reinforcement learning
would typically requires discretizing the state space. This discretization, although may be useful in
certain occasions, may not be relevant in modelling the parameters of agent based modelling and
wargaming. The reason being these models are chaotic (ie small changes may cause large effects).
Discretization in this case may hide necessary information in the input space. Other problems in RL
include being memoryless method because of its dependence on first degree Markov. Furthermore,
the credit assignment problem where it is usually difficult to distribute the reward/penbalty on
different parts of the system.

The agents incorporating adaptive learning can be used to strengthen the weight of insights derived
from OA experiments. Because the agents are ”optimizing” their movement on the basis of the
world state it might reasonably be argued that they are thus providing a better measure of what
real units might do in that current situation, rather than the unchanging approach of current sys-
tems - quite unlike a real soldier or officer. There are caveats here though. The learning algorithm
will learn to maximize the objective function on the basis of the training examples it sees. Thus
those training examples should cover the range of parameter variation that will be experimented
over. As an example, a classic OA task might be to consider the tradeoff between firepower and
sensor range. This is often performed as a 2D landscape where each point represents a particular
level of firepower and sensor range. Were adaptive learning agents to be used for the experiments
they should either be trained for each point upon the surface (i.e., a different ANN) or trained with
a range of scenarios that incorporate different firepower and sensor range levels.

7

Chapter 3

Outline Of Approach

Incorporating self-adaptation into an ABD requires the integration of a new element into an agent
- an algorithm, model, or mathematical function which seeks to adapt the behavior of the agent
over time in response to its knowledge of the environment. In most ABDs, including MANA, agent
behavior is defined by its movement choice. Hence self-adaptation in MANA becomes a matter of
adapting the parameters of the movement function over time.

Formally stated then, self-adaptation in MANA is the process of mapping the movement param-
eters at time t to those at time t + 1. The input, or parameter, to that mapping function is the
world state at time t - or at least the agent in question’s knowledge of the world. This is shown
in Equation 2.1 below: r, α and τ are mapped from their values at time t to those at time t + 1,
under the influence of the agent’s world knowledge at time t− wt.

fwt(rt, αt, τt) → rt+1, αt+1, τt+1 (3.1)

Implementing the self-adaptation is then a matter of defining and implementing the mapping func-
tion. There are several choices possible for the nature of the mapping function. One initially
appealing approach is to consider a set of simple rules - heuristics. The complexity of the world -
number and position of each friendly agent, number and position of each enemy agent, position of
agent itself, position of target flag, agent health and combat strength - yields a high dimensional
space that the mapping function must learn (the heuristic rules must cover). Writing a simple set
of rules which encompassed or abstracted all situations would be problematic at best, even for a
very tightly constrained sub-problem.

The alternate approach is to have an algorithm ”automatically” learn the mapping - machine learn-
ing. The great advantage of this approach is that a human does not need to write a set of rules
which define the mapping. Rather, the human selects the machine-learning algorithm to use, the
set of inputs to that algorithm, the function which the mapper (learning algorithm) is to optimize
(not the same as the mapping function - this is the criteria to use to determine how effective the
algorithm is), and a set of training examples. That is the approach pursued in this report.

8

Building and employing a machine-learner is a two-phase process. The first and critical phase in-
volves constructing the learner. This process is known as training the algorithm - not only are the
parameters of the algorithm selected (such as the number and form of inputs, the number of hidden
nodes if an Artificial Neural Network is used, etc.) - the algorithm must then learn the mapping
from inputs to desired outputs. This is achieved through the use of the training set and the opti-
mization criteria - the parameters within the algorithm (such as the weights on a node in an ANN, or
the transition probabilities in a Hidden Markov Model) are altered so as to maximize the objective
function. Once the machine-learner has been trained (objective function has been optimized) its pa-
rameters are fixed and it is employed. Figure 3.1 shows this process - phase 1 being training via the
objective function, and phase 2 seeing the application of that trained learner in the problem domain.

Figure 3.1: The 2-phase process in using a machine-learner: training and application.

In the machine-learning field it is well known that the training phase is crucial. Choices made at
this stage about the learning algorithm, its parameters, the size plus scope of the training set, and

9

the exact form of the objective function; all have ramifications for the final performance that the
algorithm will achieve when applied to the problem domain. As such a considerable portion of the
report is devoted to this aspect of the problem.

A final point worth making is that it is often desirable to transform the original problem space (i.e.,
the state of the ABD’s world) before input to the learning algorithm. This is simply for the purposes
of the learning algorithm, it does not alter the agent’s view of the world or their actions. Rather
these transformations are undertaken either to reduce the parameter space, transform world values
into a range suitable for the algorithm (normalization) or to simplify the problem (e.g., reflections
and rotations). This approach of transforming inputs prior to the learner is taken in this report
and discussed in a following section. The situation is shown in Figure 2.1 by the ”transform” arrow
- a process applied to the representation of the ABD world state prior to input to the learner.

10

Chapter 4

Preparing The Problem

Before we introduce the methodology, we will need to re–visit the move equation presented in Chap-
ter 1. This will be undertaken in Section 4.1. Once we establish a valid move equation, we determine
measures of success in Section 4.2 followed by necessary problem pre–processing in Section 4.3.

4.1 Re–visiting the Move Equation

A problem may arise with Equation 1.3. Because of the normalization condition in the denomina-
tor, when τ →∞, the agent’s move is taken at random according to a uniform distribution. When
τ → 0, the agent move will also be taken at random according to a uniform distribution. In other
words, τ is not behaving as the temperature in SA. Therefore, we will need to change the equation to

P (Move = i) = exp(−Zi
τ), i = 0, . . . I (4.1)

4.2 Criteria of Success

Before investigating methods for self–adaptation of parameters, one need to clearly identify the
overall criteria for a successful run. We will assume that there is a single flag and the overall success
is achieved by reaching this flag. Adaptation is simply a process that guides the run to achieve a
goal(s). However, in order to make our work as flexible as possible, we will propose a number of
criteria for success.

Criterion 1 Success is declared when at least one agent reaches the flag.

Criterion 2 Success is declared when all agents reach the flag.

Criterion 3 Loss exchange ratio

11

Criterion 4 Destruction of all enemy

Based on each criteria, a measure of fitness can be defined to guide the adaptation process locally
till the overall objective is achieved. For criterion 1, a possible measure of fitness is the distance
of the nearest agent to the flag. For criterion 2, a possible measure of fitness is the distance of
the farthest agent from the flag. Another possible measure of fitness for criterion 2 is the average
distance between all agents and the flag.

In a typical self–adaptive system, this fitness measure is used as measure for successful adaptation
as well. But before we can proceed, we need to undertake some pre–processing for the environment.

4.3 Pre–processing

In an environment such as MANA, a number of problems would arise which may add unnecessary
complexity to the learning problem. The first problem is symmetry, a simple rotation to the envi-
ronment would result in a different problem for the learning machine but in fact the rotation does
not change in principle the underlying learning problem. To overcome the complications of symme-
try, we need to undertake a suitable translation and reflection to the space. Another problem is how
to identify the center of concentration of forces. What we propose here is to apply a suitable mask
to the board; once for the blue team and another for the red. In what follows, we will introduce
each of these pre–processing.

4.3.1 Translation

Let (xf , yf) be the coordinate of the flag f and (xl, yl) be the coordinate of the farthest agent l. We
use the farthest agent to make sure that all other agents are in front of it; therefore after translation,
all agents are in the positive side.

Let us assume that the environment has a dimension of xw × yw. It is simple to see that, in order
to always have the flag at the center of the environment at (xw/2, yw/2), we need to calculate the
vector d which represents the direction of the translation,

(
dx

dy

)
=

(
xf

yf

)
−

(
xl

yl

)
−

(
xw/2
yw/2

)
(4.2)

the following translation – using homogenous coordinates – need to be undertaken for each entity,
(xold, yold, 1) in the environment.

12

(
xold yold 1

)
=

(
xnew ynew 1

)



1 0 0
0 1 0
−dx −dy 1


 (4.3)

It is worth mentioning that since in MANA the environment is a grid, all values of the previous
coordinates are integer and they will remain integer after the translation; therefore we will still
maintain a grid representation.

4.3.2 Determining the Center of Forces

To determine the center of concentration of forces for each team, let us assume the environment
to be E = {(xi, yj)|i = 1, . . . , xw, j = 1, . . . , yw}. For each cell, (xl, yk), we will need to define the
neighborhood of this cell to be as follows:




(xl−1, yl+1) (xl, yl+1) (xl+1, yl+1)
(xl−1, yl) (xl, yl) (xl+1, yl)
(xl−1, yl−1) (xl, yl−1) (xl+1, yl−1)


 (4.4)

For cells at the boundary of the grid, the missing cells in their neighborhood will have zero values
in the previous definition (ie. periodic boundaries are not assumed).

If one would like to calculate the concentration of forces for the blue team, we can imagine the grid
as a binary matrix, where the cell contains 1 if there is an entity belonging to the blue team and 0
otherwise. In this case, we will define the blue environment as

Eb
ij = {(xi, yj) =

{
1 if the cell contains a blue entity
0 otherwise

|i = 1, . . . , xw, j = 1, . . . , yw

The vice–versa can be defined for the red team, Er
ij. We can then use the following mask synchron-

ically




1 1 1
1 1 1
1 1 1


 (4.5)

After applying the previous mask a number of times equal to min(xw/2, yw/2), the center of concen-
tration of forces will be the cell with the largest number. The idea of this mask is that it propagates
the number of entities in the neighborhood of a cell to identify the cell which is surrounded by the
maximum number of entities.

13

4.3.3 Reflection

To minimize the load caused by symmetry on the learning machine, we need to fix the quadrant
which contains the center of mass. We will assume that the center of mass will always be in the
bottom left quadrant of the grid. To guarantee this assumption, all what we need to do is to rotate
the grid around the flag clock-wise till the bottom left quadrant contains the center of mass.

4.3.4 Inputs

One can expect the following to be potential inputs to the learning machine

• Points of reference

It would be interesting to collect information regarding the grid in terms of points of reference.
Points of reference identify a set of centroid, where each point represents a center for collecting
local information about the neighborhood. We suggest four points of reference at coordinates
reflecting the centroid of each quadrants; that is,

p1 = (xw/4, yw/4), p2 = (3xw/4, yw/4), p3 = (xw/4, 3yw/4), p4 = (3xw/4, 3yw/4)

After reflection, the center of mass will belong to the first quadrant p1. For each centroid pi,
the following information will be available for blue and red forces in quadrant i:-

1. x1, x2 Number of blue and red forces in the quadrant

2. x3, x4 Average range of fire for each force

3. x5, x6 Average probability of kill for each force

• x7 The size of the blue forces alive

N b =
∑

i

∑
j

Eb
ij

• x8 The size of the red forces alive

N r =
∑

i

∑
j

Er
ij

• x9, x10, x11, x12 For each quadrant, the distance between projection of the closest enemy agent
to the flag onto the line of sight between the closest friendly agent to the flag and the flag
itself.

14

• Fitness of the blue for scenario 1

min
i,j

((
xw/2
yw/2

)
−

(
i
j

))
∀Eb

ij = 1

• Fitness of the blue for scenario 2

max
i,j

((
xw/2
yw/2

)
−

(
i
j

))
∀Eb

ij = 1

OR

1

N b

∑
i,j

((
xw/2
yw/2

)
−

(
i
j

))
∀Eb

ij = 1

• Fitness of the blue for scenario 3 Loss exchange ratio

N b

N r

• Fitness of the blue for scenario 4 Destruction of all enemy

N r

15

Chapter 5

Potentially Suitable Learning Algorithm

The learning algorithm is the chief component of the adaptation system. However it is a component
in the larger framework and hence can be treated as a replaceable element.

The machine-learning field has many different tools (algorithms) available for learning the mapping
of inputs to outputs. No algorithm is pre-eminent under all situations - each has strengths and
weaknesses. Hence any feasibility study of adaptation in ABDs should discuss a range of potential
candidates together with their strengths and weaknesses for the task.

This section briefly discusses each of Hidden Markov Models (HMMs), Decision Trees, and Evolu-
tionary Artificial Neural Networks (EANNs). EANNs are identified as the most suitable candidate
for implementation due to their high (in objective function maximisation sense) performance and
minimal human intervention in the process - the network architecture is automatically evolved
rather than pre-assigned, and no set of ”pre-calculated” outputs (r, α and τ) are needed for the
training scenarios. Hence more detail is provided for EANNs than the other approaches.

5.1 Markov and Hidden Markov Models (HMMs)

Markov and Hidden Markov Models (HMMs) (also called Markov chains) [16] are a means of de-
scribing the underlying model that produces a sequence of observations. Those observations might
be a DNA sequence, spectrum of speech, or the movement choices of an agent in an ABD.

The Markov model is a collection of states, each with their own output probabilities. Those prob-
abilities describe the chance of the particular state producing the different observations. Similarly,
states are connected and have transition probabilities associated with them. Figure 5.1 is an example
of a 6-state left-to-right HMM - the model can only progress from left-to-right. Other architectures,
such as fully-connected are also possible.

HMMs are powerful machine-learning tools that are heavily used in the areas of speech recognition,

16

Figure 5.1: A 6-state, left-to-right HMM

machine vision, and protein sequencing, just to name a few. Automatic methods [10] can be used to
both train a HMM and to score an observation sequence - determine the likelihood that a particular
sequence was produced by the HMM in question.

A Markov process is one possible approach to implementing self-adaptation in an ABD. In the partic-
ular instance of the MANA movement algorithm the observation sequence would be the simulation
world state at each time step, while the Markov states would reflect changes in the three param-
eters. For instance: decrease-significantly, decrease-slightly, don’t-alter, increase-slightly, increase-
significantly, for each of the three movement parameters. Thus a single 3D HMM lattice (one
dimension for each of the 3 movement parameters) is one possible approach, while three separate
HMMs (one for each parameter) is an alternate.

HMMs have the advantage that they are very good learners (often the best performer recognisers in
different scientific areas are built around HMMs). Unsupervised training is also possible. In the case
of the suggested application to the MANA movement algorithm though a set of labelled training
data would be required - world states plus the best r, a and t values at those times. While there are
some semi-automatic techniques for deriving such training data this is a significant disadvantage
when compared with EANN. The architecture of a HMM - number of states and what transitions
are allowed - must be set prior to the start of training. Given that initial configuration the learning
algorithm will then determine the optimal weights for the transition and state output probabilities
based on the training data.

17

5.2 Artificial Neural Network

Neural networks - more specifically feedforward artificial neural networks - are universal function
approximators; that is, they can approximate any function accurately. They are found to be suit-
able for both continuous and discrete domains. A neural network is usually seen as a mapping from
the input space to the output space. If we imagine that we would like to approximate the decision
policy in reinforcement learning, neural network can do the same job efficiently. The idea here is
to use the network to decide on the next transition; therefore a good network calculates implicitly
the potential of a transition and choose the one which will increase the overall reward. In addition,
neural network can be used as a reinforcement learning tool by training the network to approximate
the value function (the expected return from a transition).

5.3 Decision Trees

Another type of learning machines which may deem to be useful here is decision trees [15]. De-
cision trees can be used to provide the decision maker with some insight into the nature of the
mapping. However, in machine learning we will find that there is a cost for each benefit! Decision
trees are more expressive than a neural network; that is, a human can understand the language of
a decision tree better than understanding the corresponding neural networks. On the other hand,
neural networks are typically more accurate and more compact than a decision tree. They are
more accurate because of their use of sigmoid functions which can approximate the target function
smoothly. They are more compact because of their use of much lesser number of neurons than the
number of hyperplanes used in decision trees.

5.4 Evolving Neural Networks Approach

Recalling that the adaptation process is a mapping from a set of parameters’ values and current
situation to a new set of parameters’ values, Artificial Neural Networks (ANNs) [8] are quit efficient
in approximating this type of mapping.

Evolutionary Artificial Neural Networks (EANNs) has proven successful in many application do-
mains. Abbass [1, 2] used a Multi-objective Optimization (MOP) approach [3, 4] to evolve ANNs.
The approach was successfully applied to a number of classification problems as well as more re-
cently in robot control. In this section, we will describe this approach and propose it to undertake
the adaptation process.

Necessary concepts are defined in Section 5.4.1 followed by the methodology in Section 5.4.2. The
chapter is concluded with how to apply the methodology in MANA in Section 5.4.3.

18

5.4.1 Definitions

Definition 1: Neighborhood of x; The set of all points within a fixed distance from x.

Definition 2: Non-dominated solution; x is a non-dominated solution if there is no other so-
lution y which is better than x when compared on all possible criteria (objectives).

Definition 3: Artificial Neural Networks (ANN); An ANN is a graph: G(N, A, ψ), where N
is a set of neurons (also called nodes), A denotes the connections (also called arcs or synapses)
between the neurons, and ψ represents the learning rules whereby neurons are able to adjust
the strengths of their interconnections. A neuron receives its inputs (also called activation)
from an external source or from other neurons in the network. It then undertakes some pro-
cessing on this input and sends the result as an output. The underlying function of a neuron
is called the activation function. The activation, a, is calculated as a weighted sum of the
inputs to the node in addition to a constant value called the bias. The bias can be easily
augmented to the input set and considered as another input.

Definition 4: Multi-layered perceptron (MLP); An MLP is in essence a non-parametric re-
gression method which approximates underlying functionality in data by minimizing a loss
function. The common loss functions used for training an ANN are the quadratic error func-
tion, where the task is to minimize the mean (expected) square error (MSE) between the
actual observed or target values and the corresponding values predicted by the network.

Definition 5: Evolutionary Algorithms; Evolutionary algorithms is a kind of global optimiza-
tion techniques that use selection and recombination as their primary operators to tackle
optimization problems.

5.4.2 The Evolutionary Neural Network Algorithm

Representation

In deciding on an appropriate representation, we tried to choose a representation that can be used
for other architectures without further modifications. Our chromosome is a class that contains
one matrix Ω and one vector ρ. The matrix Ω is of dimension (I + O) × (H + O). Each ele-
ment ωij ∈ Ω, is the weight connecting unit i with unit j, where i = 0, . . . , (I − 1) is the input
unit i, i = I, . . . , (I + O − 1) is the output unit i − I, j = 0, . . . , (H − 1) is the hidden unit j,
and j = H, . . . , (H + O − 1) is the output unit j − H. This representation has the following two
characteristics:-

19

1. It allows direct connection from each input to each output units (we allow more than a single
output unit in our representation).

2. It allows recurrent connections between the output units and themselves.

The vector ρ is of dimension H, where ρh ∈ ρ is a binary value used to indicate if hidden unit h
exists in the network or not; that is, it works as a switch to turn a hidden unit on or off. The
sum,

∑H
h=0 ρh, represents the actual number of hidden units in a network, where H is the maximum

number of hidden units. This representation allows both training the weights in the network as well
as selecting a subset of hidden units.

Methods

We have a multi–objective problem with two objectives; one is to minimize the error and the other
is to minimize the number of hidden units. The pareto–frontier tradeoff between the two objectives
will result in a set of networks with different number of hidden units (note the definition of pareto-
optimal solutions). However, sometimes the algorithm will return two pareto-networks with the
same number of hidden units. This will only take place when the actual number of pareto-optimal
solution in the population is less than 3. Because of the condition of having at least 3 parents
- which are pareto solutions - in each generation, if there are less than three parents, the pareto
optimal solutions are removed from the population and the population is re-evaluated. For example,
assume that we have only 1 pareto optimal solution in the population. In this case, we need another
2. The process simply starts by removing the pareto optimal solution from the population and find
the pareto optimal solutions in the remainder of the population. Those solutions dominating the
rest of the population are added to the pareto list until the number of pareto solutions in the list is 3.

The algorithm consists of the following steps:

1. Create a random initial population of potential solutions. The elements of the weight matrix
Ω are assigned random values according to a Gaussian distribution N(0, 1). The elements
of the binary vector ρ are assigned the value 1 with probability 0.5 based on a randomly
generated number according to a uniform distribution between [0, 1]; otherwise 0.

2. Repeat

(a) Evaluate the individuals in the population and label those who are non-dominated.

(b) If the number of non-dominated individuals is less than 3 repeat the following until the
number of non-dominated individuals is greater than or equal to 3:-

i. Find a non-dominated solution among those who are not labelled.

ii. Label the solution as non-dominated.

(c) Delete all dominated solutions from the population.

20

(d) Repeat

i. Select at random an individual as the main parent α1, and two individuals, α2, α3

as supporting parents.

ii. With some probability Uniform(0, 1), do

ωchild
ih ← ωα1

ih + Gaussian(0, 1)(ωα2
ih − ωα3

ih) (5.1)

otherwise
ωchild

ih ← ωα1
ih (5.2)

and With some probability Uniform(0, 1), do

ωchild
ho ← ωα1

ho + Gaussian(0, 1)(ωα2
ho − ωα3

ho) (5.3)

otherwise
ωchild

ho ← ωα1
ho (5.4)

where each weight in the main parent is perturbed by adding to it a ratio, F ∈
Gaussian(0, 1), of the difference between the two values of this variable in the two
supporting parents. At least one variable must be changed.

iii. If the child dominates the main parent, place it into the population.

(e) Until the population size is M

3. Until termination conditions are satisfied, go to 2 above.

5.4.3 Applying the method in MANA

The inputs to the neural network will be the 12 inputs, x1, . . . , x12 introduced in Chapter 4 and
x13 = rt, x14 = αt, and x15 = τt. The outputs will be x13 = rt+1, x14 = αt+1, and x15 = τt+1.

At each time step t, the move equation will be calculated using the three parameters rt, αt, τt. At
the following time step t + 1, the fourteen inputs x1 to x14 will be fed to the neural network and
the corresponding outputs (rt+1, αt+1, τt+1) are calculated. The run will continues until termination
conditions (ie. the blue team win/lose) are reached. The fitness of the neural network which guided
the run is calculated and evolution continues. In other words, the algorithm will be exactly as
the one presented in the previous section with the evaluation step (2.a) undertaken by using the
corresponding neural network in a number of complete MANA runs.

Notice that the evaluation is stochastic (the fitness will be different with different MANA runs).
Therefore, one would expect to undertake at least 20-50 different MANA runs per network to get
a reliable estimate of the network performance.

21

Chapter 6

Insight Extraction From The Learner

Rule extraction from neural networks [6] helps derive a symbolic description of a multi-layer feedfor-
ward artificial neural network (some rule extraction techniques work for recurrent neural networks).
The aim is to generate a set of symbolic description that mimics the network’s behavior in a concise
and comprehensible form. The advantages of rule extraction include:

• provide explanation capabilities on the network’s behavior,

• discover previously unknown dependencies in the input space,

• it helps to integrate connectionist systems with symbolic ones,

• it is a powerful tool for automated knowledge acquisition, and

• the rules sometimes generalize better than the networks from which they are extracted through
the identification of regions in the input space that are now represented.

There are many techniques for rule extraction [6]; we will limit our discussion to three of these
techniques in addition to a hybrid technique which balances comprehensibility and accuracy, and
can be directly used for rule extraction.

6.1 Boolean Rule Extraction

A decompositional approach where the rules are extracted at the level of individual units (both
hidden and output). The output of each unit is assumed to be binary (either yes or no). The idea
is to identify positive regions in the weight space which results in an output of yes and excluding
from these regions any sub-region which results in the reverse output. The algorithm works as follow:

• Select a positive weight P

22

• Find the set N of negative weights so that if we add the negative weights to the positive
weight in the set P , the result does not exceed the threshold

• Construct a rule of the form
If P and not N then True

Let us take an example. Assume a node with input weights of 5, -1, -2, -3 and a bias of -1.5. The
list P will include {I1} and the list N will include {{I4},{I3,I4},{I2,I4},{I2,I3,I4}}. Now, we can
have a rule of the form If P and not N then True

This method is very simple and provides direct interpretability to the behavior of each node. How-
ever, the complexity is very high and some rules may be omitted if we try to restrict the number
of antecedents to reduce the complexity.

6.2 Validity Interval Analysis

Validity interval analysis (VIA) extracts symbolic knowledge from artificial neural networks. A hy-
pothesis is first associated with each rule then the rule is refined to prove/disprove the hypothesis.
VIA can be applied to sparse networks as well as recurrent ones, and does not assume a specific
training algorithm. The extracted rule are correct but not exact. Each rule takes the form

If x1 in [a1, b1] and x2 in [a2, b2] then x3 in [a3, b3]

The algorithm starts with arbitrary intervals for all nodes, where each interval represents a con-
straint on the node. Two steps (forward and backward propagation) are then repeated until con-
sistent (small) changes in the intervals occur. Let us take an example for a forward propagation step.

Assume a node with two inputs 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1, weights w1 = 4, w2 = 4, and bias
of b = −6. Let us assume the weighted sum of a node is net3 and the output is x3 = σ(net3).
Therefore,

net3 = w1x1 + w2x2 + b = 4x1 + 4x2 − 6

Let us also assume that the intervals associated with each node are as follows

x1 = [0, 0.2], x2 = [0.8, 1]

Therefore, the validity interval for x3 is [−2.8,−1.2] and the output of the node is [0.057, 0.231].
We can therefore build a rule of the form

if x1 ≤ 0.2 and x2 ≥ 0.8 then x3 ∈ [0.057, 0.231].

23

This entails that the node has learnt correctly the inputs in the specified region. Let us take now an
example of a backward phase. Assume the same network with a constraint on the output x3 ≥ 0.8
and on one of the inputs x2 ≥ 0.8. Assuming that the interval for all variables 0 ≤ xi ≤ 1; therefore

x3 ≥ 0.8

x2 ≥ 0.8

0 ≤ x1 ≤ 1

propagate forward, we get −2.8 ≤ net3 ≤ 2; therefore, 0.3 ≤ x3 ≤ 0.8808 where the constraint on
x3 is not satisfied. Now backproject x3 to get 1.386 ≤ net3 ≤ 2, which means an increase on the
lower bound of net3. We cannot set bounds on x1 where we will find that 0.8465 ≤ x1 ≤ 1. This
will lead to the rule

If 0.8465 ≤ x1 ≤ 1 and 0.8 ≤ x2 ≤ 1 then 0.8 ≤ x3 ≤ 0.8808.

VIA does not guarantee the most compact rule set. However, it provides a basis for other machine
learning techniques to compact the rules.

6.3 Rulex

RULEX [7] is a technique developed at QUT’s Machine Learning Research Centre, for extracting
rules from neural networks that have been trained by the “rapid-backprop” algorithm. Each node
in the network is a local response unit (LRU) similar to radial basis function networks, except that
the LRU is constructed from sigmoid functions rather than Gaussian. The network is trained by
adjusting the centres, widths and steepness of the bumps (ie. intersections of sigmoid functions in
n dimension) to minimise the output error. When training is complete, rules are extracted by a
direct encoding of the response field of each hidden unit.

There is an additional rule-refinement phase which reduces and simplifies the rules to increase com-
prehensibility. The three refinement operations are negation, elimination, and absorption. If all
possible values of an attribute but one occur within a rule, negation of the absent value is used
instead. If all possible values of an attribute make the corresponding ridge active, that attribute is
eliminated because it does not contribute to discrimination. Absorption refers to the elimination of
an attribute’s negation when it is redundant.

In general, RULEX depends on the LRUs’ configuration. This has the disadvantage of rules being
local by definition and global structure may be undetectable. Further, rules may not account for
data in overlapping regions. Nevertheless, these techniques are easy and fast to train and the result-
ing refined rule set can be accurate and concise. Andrews [7] compared a number of rule extraction
techniques and found that RULEX alone did not need parameter initialisation.

24

6.4 C-Net

C-Net is a simple novel algorithm, proposed for generating multivariate decision trees from ANNs
[5]. The algorithm has three stages. Firstly, a single hidden layered ANN is trained on a suitable
training set until performance is deemed to be satisfactory. Secondly, the training set is presented
once more to the now-trained ANN but the outputs of the hidden units become the input feature
vector to C5, with the target output still playing its usual role in controlling the hypothesis space.
Thirdly, the univariate decision trees in the new feature space of hidden unit outputs is readily con-
verted to a multivariate decision trees in the original input space. In the implementation, Quinlan’s
C5 (an enhancement of his earlier C4.5 [15]) is employed for constructing the univariate decision
tree. The C-Net algorithm and its conceptual diagram are presented below.

• Train a neural network with < Xtraining, Ytraining >, until it reaches a satisfactory
performance on < Xvalidation, Yvalidation >.

• (1) Re-present < Xtraining, Ytraining >, < Xvalidation, Yvalidation >, and
< Xtesting, Ytesting > to the trained network and store < Htraining, Ytraining >,
< Hvalidation, Yvalidation >, and < Htesting, Ytesting >.

(2) Train C5 with < Htraining, Ytraining > and < Hvalidation, Yvalidation >.
(3) Test C5 with < Htesting, Ytesting >.

• Replace each condition in the resultant UDT, (Hj op RHSj),
op ∈ {≤, <,≥, >,=}, with (

∑I
i=1 wijXi op σ−1(RHSj)),

Figure 6.1: The C-Net algorithm

25

UDT Layer

Hidden
LayerInput

Layer

C5
Output

(Output Layer)

Figure 6.2: The C-Net conceptual representation. The output layer of the trained ANN is replaced
with an UDT.

26

Chapter 7

Implementation - A Follow-on Study?

This report is a feasibility and implementation study on the use of adaptive learning for agent based
distillations. The report includes a broad outline or design for how a machine learning algorithm -
EANN - could be applied to selection of the r, α and τ values in the MANA movement system.

This section details the action required if that broad design is to be taken to the next step and
implemented. It discusses the key steps required, and some of the issues that will be faced. The
following are considered to be the key steps in taking this report’s preliminary design and modifying
MANA on that basis:

1. Design Refinement - A more detailed design for the system and its components. In particular
the software modules and how they link to the existing MANA system.

2. Training Set Design/Selection - The design and selection of a number of training scenarios
which will be used to both train and evaluate the learning algorithm.

3. Implementation

(a) World Transform - The pre-processing system that transforms MANA’s world into a set
of inputs suitable for the learning algorithm.

(b) ANN System - A system to support Artificial Neural Networks.

(c) EANN System - Built on top of the ANN, this module allows the evolution and evaluation
of an ANN.

(d) Middleware - The coupling of the MANA system with the three previously listed com-
ponents.

4. Evaluation - A potentially iterative process by which the system performance is evaluated
against agents without adaptive learning implemented. This may involve revisiting steps 2
and 3.

27

5. Insight Extraction - This is an optional step in which the ANNs trained in the previous step
are analysed with the goal of extracting the rules they represent.

Most of the work required is coding, with some high-level design (software and experimental) and
experimentation also. Whilst exact estimates of the amount of coding required fall outside the
expertise of the authors, as an initial estimate it is felt that a suitably qualified programmer -
a graduate in computer science (preferably with honors) and a strong mathematical or machine-
learning background - could complete the work in 350 - 450 hours of work (two to two and a half
months of full-time work). In addition, as already specified, the design and experimental phases of
the project should be overseen by a qualified scientist or scientists. This would be far less involved,
some tens of hours.

It is recommended that the implementation be performed as an iterative process. While the design
and implementation of the software should be as complete as possible from the outset an exploratory
experiment representing perhaps a single class of problems (e.g., flag always in top-right corner with
enemy agents between) should be trailed first. That pilot, and the corresponding set of training
examples, can then be expanded to more and more general situations.

7.1 Issues in Implementation

There are two important issues to be considered for any implementation of the design sketch found
in this report. The first is the degree of coupling between MANA and the learning system to be
implemented. The second is the training set - its size and scope.

There are a range of choices in how closely coupled (integrated) the adaptive learning system is
with MANA. At one extreme the system is as decoupled as possible - the learning system is entirely
separate to MANA. MANA is modified minimally - simply to output a world state each turn, and
accept a set of r, a and t values for each agent each turn. This has the advantage that MANA is
modified minimally, which may be important for software engineering or even political reasons. On
the other hand this could greatly slow the running of MANA - as much as one or two orders of
magnitude slower perhaps. This is because the communication with the external learning system
will be at the file (pipes) level - much slower than operations in main memory.

The other end of the spectrum sees the learning system tightly integrated into MANA. This tends
to be a mirror case of the previous situation - there should be no appreciable impact on the speed of
MANA’s execution (the calculations required for an ANN to process a set of inputs are minimal).
On the other-hand such an approach significantly alters the design and size of MANA and probably
requires that the learning system be written in the same language as MANA.

Between these two extremes lie a number of compromises. The following list highlights the most
obvious options:

28

1. All adaptation, including training, is performed inside MANA.

2. The training portion is performed outside MANA. MANA still incorporates the transform
and ANN system.

3. Both training and ANN application are performed outside of MANA. MANA is modified to
apply the pre-processing and output that via a pipe (file), as well as to accept r, α and τ
values from another pipe.

4. All machine-learning is performed outside MANA. MANA is modified to output the world
status every turn to a pipe, as well as to accept r, a and t values from another pipe.

The second important implementation issue is design and selection of one or more training sets.
As was pointed out in a previous section, the particulars of a training set strongly define and con-
strain how well a final system will perform. If the training set is representative of the cases in
which the system will be applied, has good statistical coverage of that range of cases, as well as
include sufficient examples such that the parameters of the learning algorithm can be learnt; then
the learning system will perform to its full potential. Designing such a training set, while still
making the entire approach computationally tractable (an approach with 109 training instances
is unlikely to be very useful) is a considerable challenge. For this reason it is strongly suggested
that a bottom-up approach be taken in building one or more training sets - start from particular
well-defined sub-problems and build up to further generality from there.

29

Chapter 8

Conclusion And Future Work

This project aimed at developing mathematical or computational techniques for adaptive learning
within multi-agent simulations. The research objectives of the project and the corresponding ac-
tions are as follows:-

1. Objective: Initially focus on the mathematical technique of reinforcement learning and deter-
mine its suitability to enable adaptive learning within multi-agent simulations.

Action: The suitability of reinforcement learning is discussed in Chapter 3. We proposed
evolutionary neural networks as an alternative and more useful platform.

2. Objective: Produce adaptive learning algorithms, either from reinforcement learning or from
other appropriate mathematical or computational fields, which can be most easily imple-
mented within multi-agent simulations.

Action: A description of three adaptive learning algorithms is given and a detailed algorithm
is explained using evolutionary artificial neural network.

3. Objective: Detail the requirements for modifications, if any, to multi-agent simulations to
enable the inclusion of the adaptive learning algorithms produced.

Action: an implementation plan is given in Chapter 7.

4. Objective: Provide a description of the potential uses and benefits of the adaptive learning
algorithms developed for multi-agent simulations.

Action: a description of the potential uses and benefits of the adaptive learning algorithms
developed for multi-agent simulations is given in Chapters 2 and 3.

30

5. Objective: The project deliverable is a written report detailing the research results against
each of the four objectives above.

Action: This document represents the project deliverable.

In summary, the project was successful and the interaction between our group and the DSTO group
lead by Dr. Gill was very productive and successful. The research reported here raised a number
of questions described below.

8.1 Research Questions

A number of research questions are likely to arise during the implementation of the proposed sys-
tem. Further, it is likely that the system will facilitate a number of research questions that could
not be addressed previously.

The best design for, and organization of training sets for this particular problem is unknown. This
not only has theoretical but practical implications. For instance it may be practical or desirable
to have a single model for all classes of problems that a group of agents face. Alternatively it
may be ”better” to have separate models for separate types of problems - for instance one model
for when the moving force is relatively clustered and another model for when the moving force is
dispersed - and apply the model that is most appropriate for the problem. The second approach
would require a clustering of training data into different sets and the training of separate models.
Each new problem would then need to be classified before the most appropriate model could be
applied. Determining whether this would be a better approach than a single ”global” model for all
cases would require experimentation.

A similar, but system-driven approach is to build a number of ANN learners for a number of different
classes of problems. Those classes could then be automatically grouped on the basis of differences
between the ANNs, rather than a human-assigned partitioning. This may yield new insights about
the problem domain itself.

One critical question is the performance of the agents that incorporate adaptive learning. How
different is their behavior contrasted with agents that lack learning? This can be measured in a
number of different ways. At one level the variability in the alpha, tau, and r values that the learning
algorithm generates can be examined. At a higher, and more interesting, level the performance of
the agents can be measured. Given a set of scenarios the outcomes when adaptive learning agents
are used can be quantified and contrasted against those same scenarios but using non-adaptive
agents. Most interesting, but most challenging, would be to seek to contrast performance in a
qualitative sense - for instance are the learning agents being ”more manouevrist”?

Finally, the question of rule-extraction from the ANN(s) arises. It will be possible, with some loss
of accuracy, to transform the system represented by the weights of the ANN into a set of decision-

31

tree like rules. The intriguing question of whether those rules can be understood and encoded in
a succinct and human understandable form arises. This is an open possibility - though the very
multi-dimensional aspect of the input parameter space, which necessitated an automated machine-
learning approach, implies that the rule representation of the ANN weights will be difficult for a
human-being to interpret.

32

Bibliography

[1] H.A. Abbass. A memetic pareto evolutionary approach to artificial neural networks. In Markus
Stumptner, Dan Corbett, and Mike Brooks, editors, AI2001: Advances in Artificial Intelli-
gence, LNAI2256, pages 1–12. Springer, 2001.

[2] H.A. Abbass. An evolutionary artificial neural networks approach for breast cancer diagnosis.
Artificial Intelligence in Medicine, 2002.

[3] H.A. Abbass. Self-adaptive pareto differential evolution. In IEEE Congress on Evolutionary
Computation, USA. IEEE Publishing, 2002.

[4] H.A. Abbass, R. Sarker, and C. Newton. A pareto differential evolution approach to vector op-
timisation problems. In IEEE Congress on Evolutionary Computation, Seoul, Korea, volume 2,
pages 971–978. IEEE Publishing, 2001.

[5] H.A. Abbass, M. Towsey, and G. Finn. C-net: A method for generating non-deterministic and
dynamic multivariate decision trees. Knowledge and Information Systems: An International
Journal (KAIS), 5(2):184–197, 2001.

[6] R. Andrews and J. Diederich. Rules and networks. Proceedings of the Rule Extraction from
Trained Artificial Neural Network Workshop, University of Sussex, Brighton, U.K, 1996.

[7] R. Andrews, J. Diederich, and A. Tickle. A survey and critique of techniques for extracting
rules from trained artificial neural networks. Knowledge Based Systems, 8(6):373–389, 1995.

[8] S. Haykin. Neural networks - a comprehensive foundation. Printice Hall, New Jersey, USA, 2
edition, 1999.

[9] A. Ilachinski. Irreducible semi-autonomous adaptive combat (isaac): An artificial-life approach
to land combat. Military Operations Research, 5(3):29–47, 2000.

[10] G.D.Forney Jr. The viterbi algorithm. Proc. IEEE, 61(3):263–278, 1973.

[11] Michael K. Lauren. Characterising the difference between complex adaptive and conventional
combat models. DOTSE Report 169 1335, New Zealands Defence Technology Agency, 1999.

[12] Michael K. Lauren. Modelling combat using fractals and the statistics of scaling systems. Mil-
itary Operations Research, Warfare Analysis and Complexity Special Issue, 5(3):47–59, 2000.

33

[13] Michael K. Lauren and Roger T. Stephen. Modelling patrol survivability in a generic peace-
keeping setting using isaac. DOTSE Report 177 1358, New Zealands Defence Technology
Agency, 2000.

[14] Michael K. Lauren and Roger T. Stephen. Map aware non-uniform automata, version 1.0.
Users manual, New Zealands Defence Technology Agency, 6 2001.

[15] J.R. Quinlan. C4.5: programs for machine learning. Morgan Kaufman, 1993.

[16] L. R. Rabiner and B. H. Juang. An introduction to hidden markov models. IEEE ASSP Mag.,
pages 4–16, 1986.

34

